메뉴 건너뛰기




Volumn , Issue , 2013, Pages 187-206

Assessment metrics for imbalanced learning

Author keywords

Assessment metrics; Class imbalance; Evaluation metric families; Imbalanced learning; Ranking methods; Threshold metrics

Indexed keywords


EID: 85076269272     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118646106.ch8     Document Type: Chapter
Times cited : (115)

References (21)
  • 2
    • 79951756007 scopus 로고    scopus 로고
    • Consequences of variability in classifier performance estimates
    • Sydney, Australia, IEEE Computer Society
    • T. Raeder, T. R. Hoens, and N. V. Chawla, “Consequences of variability in classifier performance estimates,” in ICDM (Sydney, Australia), pp. 421-430, IEEE Computer Society, 2010.
    • (2010) ICDM , pp. 421-430
    • Raeder, T.1    Hoens, T.R.2    Chawla, N.V.3
  • 3
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • C. Ferri, J. Haernandez-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognition Letters, vol. 30, pp. 27-38, 2009.
    • (2009) Pattern Recognition Letters , vol.30 , pp. 27-38
    • Ferri, C.1    Haernandez-Orallo, J.2    Modroiu, R.3
  • 6
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. J. Provost and T. Fawcett, “Robust classification for imprecise environments,” Machine Learning, vol. 42, no. 3, pp. 203-231, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 7
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection of oil spills in satellite radar images,” Machine Learning, vol. 30, pp. 195-215, 1998.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 9
    • 34547372256 scopus 로고    scopus 로고
    • Optimized precision: A new measure for classifier performance evaluation
    • Vancouver, BC, IEEE Computer Society
    • R. Ranawana and V. Palade, “Optimized precision: A new measure for classifier performance evaluation,” in Proceedings of the IEEE Congress on Evolutionary Computation (Vancouver, BC), pp. 2254-2261, IEEE Computer Society, 2006.
    • (2006) Proceedings of the IEEE Congress on Evolutionary Computation , pp. 2254-2261
    • Ranawana, R.1    Palade, V.2
  • 10
    • 77950806386 scopus 로고    scopus 로고
    • A new performance measure for class imbalance learning. Application to bioinformatics problems
    • Miami Beach, FL, USA, IEEE Computer Society
    • R. Batuwita and V. Palade, “A new performance measure for class imbalance learning. Application to bioinformatics problems,” in ICMLA (Miami Beach, FL, USA), pp. 545-550, IEEE Computer Society, 2009.
    • (2009) ICMLA , pp. 545-550
    • Batuwita, R.1    Palade, V.2
  • 11
    • 78149483936 scopus 로고    scopus 로고
    • Theoretical analysis of a performance measure for imbalanced data
    • Istanbul, Turkey, IEEE Computer Society
    • V. García, R. A. Mollineda, and J. S. Sanchez, “Theoretical analysis of a performance measure for imbalanced data,” in ICPR (Istanbul, Turkey), pp. 617-620, IEEE Computer Society, 2010.
    • (2010) ICPR , pp. 617-620
    • García, V.1    Mollineda, R.A.2    Sanchez, J.S.3
  • 12
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distribution
    • G. I. Webb and K. M. Ting, “On the application of ROC analysis to predict classification performance under varying class distribution,” Machine Learning, vol. 58, pp. 25-32, 2005.
    • (2005) Machine Learning , vol.58 , pp. 25-32
    • Webb, G.I.1    Ting, K.M.2
  • 13
    • 14844357975 scopus 로고    scopus 로고
    • A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distribution’,”
    • T. Fawcett and P. A. Flach, “A response to Webb and Ting’s on the application of ROC analysis to predict classification performance under varying class distribution’,” Machine Learning, vol. 58, pp. 33-38, 2005.
    • (2005) Machine Learning , vol.58 , pp. 33-38
    • Fawcett, T.1    Flach, P.A.2
  • 16
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D. J. Hand, “Measuring classifier performance: A coherent alternative to the area under the ROC curve,” Machine Learning, vol. 77, no. 1, pp. 103-123, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 19
    • 70350468477 scopus 로고    scopus 로고
    • Benchmarking non-parametric statistical tests
    • Vancouver, BC, Canada, MIT Press
    • M. Keller, S. Bengio, and S. Y. Wong, “Benchmarking non-parametric statistical tests,” in NIPS, (Vancouver, BC, Canada), pp. 464, MIT Press, 2005.
    • (2005) NIPS , pp. 464
    • Keller, M.1    Bengio, S.2    Wong, S.Y.3
  • 20
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, pp. 861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 21
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • D. J. Hand and R. J. Till, “A simple generalisation of the area under the ROC curve for multiple class classification problems,” Machine Learning, vol. 45, pp. 171-186, 2001.
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.