-
2
-
-
79951756007
-
Consequences of variability in classifier performance estimates
-
Sydney, Australia, IEEE Computer Society
-
T. Raeder, T. R. Hoens, and N. V. Chawla, “Consequences of variability in classifier performance estimates,” in ICDM (Sydney, Australia), pp. 421-430, IEEE Computer Society, 2010.
-
(2010)
ICDM
, pp. 421-430
-
-
Raeder, T.1
Hoens, T.R.2
Chawla, N.V.3
-
3
-
-
70349280929
-
An experimental comparison of performance measures for classification
-
C. Ferri, J. Haernandez-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognition Letters, vol. 30, pp. 27-38, 2009.
-
(2009)
Pattern Recognition Letters
, vol.30
, pp. 27-38
-
-
Ferri, C.1
Haernandez-Orallo, J.2
Modroiu, R.3
-
4
-
-
12244279570
-
Data mining in metric space: An empirical analysis of supervised learning performance criteria
-
Seattle, WA
-
R. Caruana and A. Niculescu-Mizil, “Data mining in metric space: An empirical analysis of supervised learning performance criteria,” in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data mining, (Seattle, WA), pp. 69-78, 2004.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 69-78
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
5
-
-
68549133155
-
Learning from imbalanced data
-
H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
6
-
-
0035283313
-
Robust classification for imprecise environments
-
F. J. Provost and T. Fawcett, “Robust classification for imprecise environments,” Machine Learning, vol. 42, no. 3, pp. 203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.J.1
Fawcett, T.2
-
7
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection of oil spills in satellite radar images,” Machine Learning, vol. 30, pp. 195-215, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.C.2
Matwin, S.3
-
8
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. GeissbUhler, “Learning from imbalanced data in surveillance of nosocomial infection,” Artificial Intelligence in Medicine, vol. 37, no. 1, pp. 7-18, 2006.
-
(2006)
Artificial Intelligence in Medicine
, vol.37
, Issue.1
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
9
-
-
34547372256
-
Optimized precision: A new measure for classifier performance evaluation
-
Vancouver, BC, IEEE Computer Society
-
R. Ranawana and V. Palade, “Optimized precision: A new measure for classifier performance evaluation,” in Proceedings of the IEEE Congress on Evolutionary Computation (Vancouver, BC), pp. 2254-2261, IEEE Computer Society, 2006.
-
(2006)
Proceedings of the IEEE Congress on Evolutionary Computation
, pp. 2254-2261
-
-
Ranawana, R.1
Palade, V.2
-
10
-
-
77950806386
-
A new performance measure for class imbalance learning. Application to bioinformatics problems
-
Miami Beach, FL, USA, IEEE Computer Society
-
R. Batuwita and V. Palade, “A new performance measure for class imbalance learning. Application to bioinformatics problems,” in ICMLA (Miami Beach, FL, USA), pp. 545-550, IEEE Computer Society, 2009.
-
(2009)
ICMLA
, pp. 545-550
-
-
Batuwita, R.1
Palade, V.2
-
11
-
-
78149483936
-
Theoretical analysis of a performance measure for imbalanced data
-
Istanbul, Turkey, IEEE Computer Society
-
V. García, R. A. Mollineda, and J. S. Sanchez, “Theoretical analysis of a performance measure for imbalanced data,” in ICPR (Istanbul, Turkey), pp. 617-620, IEEE Computer Society, 2010.
-
(2010)
ICPR
, pp. 617-620
-
-
García, V.1
Mollineda, R.A.2
Sanchez, J.S.3
-
12
-
-
14844366200
-
On the application of ROC analysis to predict classification performance under varying class distribution
-
G. I. Webb and K. M. Ting, “On the application of ROC analysis to predict classification performance under varying class distribution,” Machine Learning, vol. 58, pp. 25-32, 2005.
-
(2005)
Machine Learning
, vol.58
, pp. 25-32
-
-
Webb, G.I.1
Ting, K.M.2
-
13
-
-
14844357975
-
A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distribution’,”
-
T. Fawcett and P. A. Flach, “A response to Webb and Ting’s on the application of ROC analysis to predict classification performance under varying class distribution’,” Machine Learning, vol. 58, pp. 33-38, 2005.
-
(2005)
Machine Learning
, vol.58
, pp. 33-38
-
-
Fawcett, T.1
Flach, P.A.2
-
14
-
-
34147120594
-
Precision-recall operating characteristics (P-ROC) curves in imprecise environments
-
Hong Kong, China, IEEE Computer Society
-
T. Landgrebe, P. Paclik, and R. P. W. Duin, “Precision-recall operating characteristics (p-ROC) curves in imprecise environments,” in Proceedings of the Eighteenth International Conference on Pattern Recognition (Hong Kong, China), pp. 123-127, IEEE Computer Society, 2006.
-
(2006)
Proceedings of the Eighteenth International Conference on Pattern Recognition
, pp. 123-127
-
-
Landgrebe, T.1
Paclik, P.2
Duin, R.P.W.3
-
15
-
-
34250727580
-
The relationship between precision-recall and ROC curves
-
(Pittsburgh, Pennsylvania, USA), ACM
-
J. Davis and M. Goadrich, “The relationship between precision-recall and ROC curves,” in the Proceedings of the Twenty-Third International Conference on Machine Learning, (Pittsburgh, Pennsylvania, USA), pp. 233-240, ACM, 2006.
-
(2006)
The Proceedings of the Twenty-Third International Conference on Machine Learning
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
16
-
-
69549133517
-
Measuring classifier performance: A coherent alternative to the area under the ROC curve
-
D. J. Hand, “Measuring classifier performance: A coherent alternative to the area under the ROC curve,” Machine Learning, vol. 77, no. 1, pp. 103-123, 2009.
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 103-123
-
-
Hand, D.J.1
-
17
-
-
80053458905
-
A coherent interpretation of AUC as a measure of aggregated classification performance
-
New York, NY, USA, Omnipress
-
P. Flach, J. Hernandez-Orallo, and C. Ferri, “A coherent interpretation of AUC as a measure of aggregated classification performance,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11) (New York, NY, USA), pp. 657-664, Omnipress, 2011.
-
(2011)
Proceedings of the 28Th International Conference on Machine Learning (ICML-11)
, pp. 657-664
-
-
Flach, P.1
Hernandez-Orallo, J.2
Ferri, C.3
-
18
-
-
33750710706
-
B-ROC curves for the assessment of classifiers over imbalanced data sets
-
(Boston, MA, USA), AAAI Press
-
A. Cardenas and J. Baras, “B-ROC curves for the assessment of classifiers over imbalanced data sets,” in Proceedings of the Twenty-First National Conference on Artificial Intelligence (Boston, MA, USA), pp. 1581-1584, AAAI Press, 2006.
-
(2006)
Proceedings of the Twenty-First National Conference on Artificial Intelligence
, pp. 1581-1584
-
-
Cardenas, A.1
Baras, J.2
-
19
-
-
70350468477
-
Benchmarking non-parametric statistical tests
-
Vancouver, BC, Canada, MIT Press
-
M. Keller, S. Bengio, and S. Y. Wong, “Benchmarking non-parametric statistical tests,” in NIPS, (Vancouver, BC, Canada), pp. 464, MIT Press, 2005.
-
(2005)
NIPS
, pp. 464
-
-
Keller, M.1
Bengio, S.2
Wong, S.Y.3
-
20
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, pp. 861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
21
-
-
0003562954
-
A simple generalisation of the area under the ROC curve for multiple class classification problems
-
D. J. Hand and R. J. Till, “A simple generalisation of the area under the ROC curve for multiple class classification problems,” Machine Learning, vol. 45, pp. 171-186, 2001.
-
(2001)
Machine Learning
, vol.45
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
|