메뉴 건너뛰기




Volumn 235, Issue , 2019, Pages

Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product

Author keywords

Continuous monitoring; Data fusion; Deep learning; Landsat 8; Sentinel 2

Indexed keywords

BENCHMARKING; DATA FUSION; IMAGE ENHANCEMENT; IMAGE FUSION; IMAGE QUALITY; IMAGE RESOLUTION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; NEURAL NETWORKS; REFLECTION; SENSOR DATA FUSION;

EID: 85073688762     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2019.111425     Document Type: Article
Times cited : (194)

References (53)
  • 1
    • 33750939626 scopus 로고    scopus 로고
    • The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna
    • Acerbi-Junior, F.W., Clevers, J.G.P.W., & Schaepman, M.E. (2006). The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. International Journal of Applied Earth Observation and Geoinformation, 8, 278-288
    • (2006) Int. J. Appl. Earth Obs. Geoinf. , vol.8 , pp. 278-288
    • Acerbi-Junior, F.W.1    Clevers, J.G.P.W.2    Schaepman, M.E.3
  • 3
    • 85034623511 scopus 로고    scopus 로고
    • Beyond RGB: very high resolution urban remote sensing with multimodal deep networks
    • Audebert, N., Le Saux, B., & Lefevre, S. (2017). Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing.
    • (2018) ISPRS J. Photogrammetry Remote Sens. , vol.140 , pp. 20-32
    • Audebert, N.1    Le Saux, B.2    Lefèvre, S.3
  • 4
    • 85044191231 scopus 로고    scopus 로고
    • Harmonized Landsat-8 Sentinel-2 (HLS) Product User's Guide
    • National Aeronautics and Space Administration (NASA) Washington, DC, USA
    • Claverie, M., Masek, J. G., Ju, J., & Dungan, J. L. (2017). Harmonized landsat-8 sentinel-2 (HLS) product user's guide. National Aeronautics and Space Administration (NASA): Washington, DC, USA.
    • (2017)
    • Claverie, M.1    Masek, J.G.2    Ju, J.3    Dungan, J.L.4
  • 6
    • 84997638197 scopus 로고    scopus 로고
    • Deep-step: a deep learning approach for spatiotemporal prediction of remote sensing data
    • Das, M., & Ghosh, S. K. (2016). Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 13(12), 1984-1988.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 1984-1988
    • Das, M.1    Ghosh, S.K.2
  • 7
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Dong, C., Loy, C.C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 9
    • 84875063135 scopus 로고    scopus 로고
    • Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection
    • Emelyanova, I. V., McVicar, T. R., Van Niel, T. G., Li, L. T., & van Dijk, A. I. (2013). Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sensing of Environment, 133, 193-209.
    • (2013) Remote Sens. Environ. , vol.133 , pp. 193-209
    • Emelyanova, I.V.1    McVicar, T.R.2    Van Niel, T.G.3    Li, L.T.4    van Dijk, A.I.5
  • 10
    • 84954169999 scopus 로고    scopus 로고
    • A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery
    • Fu, P., & Weng, Q. (2016a). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214.
    • (2016) Remote Sens. Environ. , vol.175 , pp. 205-214
    • Fu, P.1    Weng, Q.2
  • 11
    • 84977112077 scopus 로고    scopus 로고
    • Consistent land surface temperature data generation from irregularly spaced Landsat imagery
    • Fu, P., & Weng, Q. (2016b). Consistent land surface temperature data generation from irregularly spaced Landsat imagery. Remote Sensing of Environment, 184, 175-187.
    • (2016) Remote Sens. Environ. , vol.184 , pp. 175-187
    • Fu, P.1    Weng, Q.2
  • 12
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 13
    • 84907963084 scopus 로고    scopus 로고
    • A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
    • Gevaert, C. M., & Garcia-Haro, F. J. (2015). A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote sensing of Environment, 156, 34-44.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 34-44
    • Gevaert, C.M.1    García-Haro, F.J.2
  • 15
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 67349083870 scopus 로고    scopus 로고
    • A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
    • Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F., & White, J.C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113, 1613-1627.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1613-1627
    • Hilker, T.1    Wulder, M.A.2    Coops, N.C.3    Linke, J.4    McDermid, G.5    Masek, J.G.6    Gao, F.7    White, J.C.8
  • 17
    • 84937806794 scopus 로고    scopus 로고
    • Advances in natural language processing
    • Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261.
    • (2015) Science , vol.349 , Issue.6245 , pp. 261
    • Hirschberg, J.1    Manning, C.D.2
  • 18
    • 84867089572 scopus 로고    scopus 로고
    • Spatiotemporal reflectance fusion via sparse representation
    • Huang, B., & Song, H. (2012). Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3707-3716.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3707-3716
    • Huang, B.1    Song, H.2
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based leaning applied to document recognition
    • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based leaning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 23
    • 0034521444 scopus 로고    scopus 로고
    • Smoothing Filter-based Intensity Modulation: a spectral preserve image fusion technique for improving spatial details
    • Liu, J. G. (2000). Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461-3472.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.18 , pp. 3461-3472
    • Liu, J.G.1
  • 25
    • 84996761516 scopus 로고    scopus 로고
    • Fast and accurate spatiotemporal fusion based upon extreme learning machine
    • Liu, X., Deng, C., Wang, S., Huang, G. B., Zhao, B., & Lauren, P. (2016). Fast and accurate spatiotemporal fusion based upon extreme learning machine. IEEE Geoscience and Remote Sensing Letters, 13(12), 2039-2043.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 2039-2043
    • Liu, X.1    Deng, C.2    Wang, S.3    Huang, G.B.4    Zhao, B.5    Lauren, P.6
  • 26
    • 84859420524 scopus 로고    scopus 로고
    • Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
    • Malenovsky, Z., Rott, H., Cihlar, J., Schaepman, M.E., Garcia-Santos, G., Fernandes, R., & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91-101.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 91-101
    • Malenovský, Z.1    Rott, H.2    Cihlar, J.3    Schaepman, M.E.4    García-Santos, G.5    Fernandes, R.6    Berger, M.7
  • 27
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • Masi, G., Cozzolino, D., Verdoliva, L., & Scarpa G. (2016). Pansharpening by Convolutional Neural Networks. Remote Sensing, 8(7), 594.
    • (2016) Remote Sens. , vol.8 , Issue.7 , pp. 594
    • Masi, G.1    Cozzolino, D.2    Verdoliva, L.3    Scarpa, G.4
  • 28
    • 84873743206 scopus 로고    scopus 로고
    • Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data
    • Melaas, E. K., Friedl, M. A., & Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ., 132, 2013, 176-185.
    • (2013) Remote Sens. Environ. , vol.132 , pp. 176-185
    • Melaas, E.K.1    Friedl, M.A.2    Zhu, Z.3
  • 31
    • 0033982849 scopus 로고    scopus 로고
    • Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation
    • Ranchin, T., & Wald, L. (2000). Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogrammetric Engineering and Remote Sensing, 66, 49-61.
    • (2000) Photogramm. Eng. Remote Sens. , vol.66 , pp. 49-61
    • Ranchin, T.1    Wald, L.2
  • 33
    • 84921894711 scopus 로고    scopus 로고
    • Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia
    • Skakun, S., Kussul, N., Shelestov, A., & Kussul, O. (2014). Flood hazard and flood risk assessment using a time series of satellite images: A case study in Namibia. Risk Analysis, 34(8), 1521-1537.
    • (2014) Risk Anal. , vol.34 , Issue.8 , pp. 1521-1537
    • Skakun, S.1    Kussul, N.2    Shelestov, A.3    Kussul, O.4
  • 34
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 35
    • 85016397067 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series
    • Senf, C., Pflugmacher, D., Heurich, M., & Krueger, T. (2017). A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series. Remote Sensing of Environment, 194, 155-160.
    • (2017) Remote Sens. Environ. , vol.194 , pp. 155-160
    • Senf, C.1    Pflugmacher, D.2    Heurich, M.3    Krueger, T.4
  • 36
    • 84925410541 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition
    • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 85043454023 scopus 로고    scopus 로고
    • Remote sensing image fusion with deep convolutional neural network
    • (2018)
    • Shao, Z., & Cai, J. (2018). Remote sensing image fusion with deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11 (5), 2018, 1656-1669.
    • (2018) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.11 , Issue.5 , pp. 1656-1669
    • Shao, Z.1    Cai, J.2
  • 39
    • 84906941450 scopus 로고    scopus 로고
    • Using the USGS Landsat 8 product
    • [Online]. Available
    • USGS. (2015). Using the USGS Landsat 8 product. [Online]. Available: http://landsat.usgs.gov/Landsat8_Using_Product.php.
    • (2015)
    • USGS1
  • 40
    • 85026740667 scopus 로고    scopus 로고
    • Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
    • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415-426.
    • (2017) Remote Sens. Environ. , vol.199 , pp. 415-426
    • Veloso, A.1    Mermoz, S.2    Bouvet, A.3    Le Toan, T.4    Planells, M.5    Dejoux, J.-F.6    Ceschia, E.7
  • 41
    • 84859643212 scopus 로고    scopus 로고
    • Near real-time disturbance detection using satellite image time series
    • Verbesselt, J., Zeileis, A., & Herold, M. (2012). Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment, 123, 98-108.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 98-108
    • Verbesselt, J.1    Zeileis, A.2    Herold, M.3
  • 42
    • 0031284883 scopus 로고    scopus 로고
    • Fusion of satellite images of different spatial resolution: assessing the quality of resulting images
    • Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images. Photogrammetric Engineering and Remote Sensing, 63, 691-699.
    • (1997) Photogramm. Eng. Remote Sens. , vol.63 , pp. 691-699
    • Wald, L.1    Ranchin, T.2    Mangolini, M.3
  • 46
    • 84945312168 scopus 로고    scopus 로고
    • Hyperspectral and multispectral image fusion based on a sparse representation
    • Wei, Q., Bioucas-Dias, J., Dobigeon, N., & Tourneret, J. Y. (2015). Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3658-3668.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3658-3668
    • Wei, Q.1    Bioucas-Dias, J.2    Dobigeon, N.3    Tourneret, J.Y.4
  • 47
    • 85017133603 scopus 로고    scopus 로고
    • A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
    • White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C., & Hobart, G. W. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, 194, 303-321.
    • (2017) Remote Sens. Environ. , vol.194 , pp. 303-321
    • White, J.C.1    Wulder, M.A.2    Hermosilla, T.3    Coops, N.C.4    Hobart, G.W.5
  • 51
    • 77956177720 scopus 로고    scopus 로고
    • An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
    • Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J.G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114, 2610-2623.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2610-2623
    • Zhu, X.1    Chen, J.2    Gao, F.3    Chen, X.4    Masek, J.G.5
  • 52
    • 84947594795 scopus 로고    scopus 로고
    • A flexible spatiotemporal method for fusing satellite images with different resolutions
    • Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., & Lefsky, M. A. (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165-177.
    • (2016) Remote Sens. Environ. , vol.172 , pp. 165-177
    • Zhu, X.1    Helmer, E.H.2    Gao, F.3    Liu, D.4    Chen, J.5    Lefsky, M.A.6
  • 53
    • 84893747703 scopus 로고    scopus 로고
    • Continuous change detection and classification of land cover using all available Landsat data
    • Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 152-171
    • Zhu, Z.1    Woodcock, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.