메뉴 건너뛰기




Volumn 199, Issue , 2019, Pages

Thermodynamic, exergoeconomic, and environmental evaluation of a new multi-generation system driven by a molten carbonate fuel cell for production of cooling, heating, electricity, and freshwater

Author keywords

Desalination; Environmental; Exergoeconomic; Molten carbonate fuel cell; Multi generation; Thermodynamic

Indexed keywords

ABSORPTION COOLING; CARBON DIOXIDE; CARBONATION; DESALINATION; ELECTRIC POWER GENERATION; EXERGY; GLOBAL WARMING; HEAT EXCHANGERS; INVESTMENTS; THERMODYNAMICS; WATER;

EID: 85072037765     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2019.112040     Document Type: Article
Times cited : (99)

References (42)
  • 1
    • 0030157484 scopus 로고    scopus 로고
    • Depletion of fossil fuels and the impacts of global warming
    • M. Hoel, and S. Kverndokk. “Depletion of fossil fuels and the impacts of global warming.” Resource and Energy Economics 18, no. 2 (1996): 115-136.
    • (1996) Resour Energy Econ , vol.18 , Issue.2 , pp. 115-136
    • Hoel, M.1    Kverndokk, S.2
  • 2
    • 84907728258 scopus 로고    scopus 로고
    • Combined cooling, heating and power: a review of performance improvement and optimization
    • H. Cho, A.D. Smith, and P. Mago. “Combined cooling, heating and power: A review of performance improvement and optimization.” Applied Energy 136 (2014): 168-185.
    • (2014) Appl Energy , vol.136 , pp. 168-185
    • Cho, H.1    Smith, A.D.2    Mago, P.3
  • 3
    • 85070229991 scopus 로고    scopus 로고
    • Thermodynamic assessment of a novel multi-generation solid oxide fuel cell-based system for production of electrical power, cooling, fresh water, and hydrogen
    • M.A. Haghghi, S.G. Holagh, A. Chitsaz, and K. Parham. “Thermodynamic assessment of a novel multi-generation solid oxide fuel cell-based system for production of electrical power, cooling, fresh water, and hydrogen.” Energy Conversion and Management197 (2019): 111895.
    • (2019) Energy Convers Manage , vol.197
    • Haghghi, M.A.1    Holagh, S.G.2    Chitsaz, A.3    Parham, K.4
  • 4
    • 85062597853 scopus 로고    scopus 로고
    • Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME)
    • A. Chitsaz, M.A. Haghghi, and J. Hosseinpour. “Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME).”Energy Conversion and Management186 (2019): 487-499.
    • (2019) Energy Convers Manage , vol.186 , pp. 487-499
    • Chitsaz, A.1    Haghghi, M.A.2    Hosseinpour, J.3
  • 5
    • 0004176377 scopus 로고    scopus 로고
    • Fuel cell systems explained
    • 2d ed. J. Wiley Chichester, UK
    • J. Larminie, A. Dicks, and M.S. McDonald.Fuel cell systems explained. 2d ed. Chichester, UK: J. Wiley, 2003.
    • (2003)
    • Larminie, J.1    Dicks, A.2    McDonald, M.S.3
  • 6
    • 18844428294 scopus 로고    scopus 로고
    • Molten carbonate fuel cells
    • A.L. Dicks. “Molten carbonate fuel cells.”Current Opinion in Solid State and Materials Science8, no. 5 (2004): 379-383.
    • (2004) Curr Opin Solid State Mater Sci , vol.8 , Issue.5 , pp. 379-383
    • Dicks, A.L.1
  • 7
    • 85014824024 scopus 로고    scopus 로고
    • Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine
    • M. Mehrpooya, S. Shahrad, and M.J. Zonouz. “Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine.”Journal of Cleaner Production148 (2017): 283-294.
    • (2017) J Cleaner Prod , vol.148 , pp. 283-294
    • Mehrpooya, M.1    Shahrad, S.2    Zonouz, M.J.3
  • 8
    • 79951849773 scopus 로고    scopus 로고
    • Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle
    • D. Sánchez, JM. M De Escalona, B. Monje, R. Chacartegui, and T. Sánchez. “Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle.”Journal of Power Sources196, no. 9 (2011): 4355-4363.
    • (2011) J Power Sources , vol.196 , Issue.9 , pp. 4355-4363
    • Sánchez, D.1    De Escalona, J.M.M.2    Monje, B.3    Chacartegui, R.4    Sánchez, T.5
  • 9
    • 85032960184 scopus 로고    scopus 로고
    • Performance assessment of an integrated molten carbonate fuel cell-thermoelectric devices hybrid system for combined power and cooling purposes
    • M. Wu, H. Zhang, and T. Liao. “Performance assessment of an integrated molten carbonate fuel cell-thermoelectric devices hybrid system for combined power and cooling purposes.”International Journal of Hydrogen Energy42, no. 51 (2017): 30156-30165.
    • (2017) Int J Hydrogen Energy , vol.42 , Issue.51 , pp. 30156-30165
    • Wu, M.1    Zhang, H.2    Liao, T.3
  • 10
    • 65949105517 scopus 로고    scopus 로고
    • Performance investigation of a combined MCFC system
    • R. Rashidi, P. Berg, and I. Dincer. “Performance investigation of a combined MCFC system.”International Journal of Hydrogen Energy34, no. 10 (2009): 4395-4405.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.10 , pp. 4395-4405
    • Rashidi, R.1    Berg, P.2    Dincer, I.3
  • 11
    • 85047649048 scopus 로고    scopus 로고
    • Optimization and part-load performance analysis of MCFC/ST hybrid power system
    • L. Duan, H. Lu, M. Yuan, and Z. Lv. “Optimization and part-load performance analysis of MCFC/ST hybrid power system.”Energy152 (2018): 682-693.
    • (2018) Energy , vol.152 , pp. 682-693
    • Duan, L.1    Lu, H.2    Yuan, M.3    Lv, Z.4
  • 12
    • 79958790966 scopus 로고    scopus 로고
    • Energy and exergy analyses of a combined molten carbonate fuel cell–gas turbine system
    • R.S. El-Emam, and I. Dincer. “Energy and exergy analyses of a combined molten carbonate fuel cell–gas turbine system.”International Journal of Hydrogen Energy36, no. 15 (2011): 8927-8935.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.15 , pp. 8927-8935
    • El-Emam, R.S.1    Dincer, I.2
  • 13
    • 84988640867 scopus 로고    scopus 로고
    • Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system
    • Z. Yang, T. Liao, Y. Zhou, G. Lin, and J. Chen. “Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system.”Energy Conversion and Management128 (2016): 28-33.
    • (2016) Energy Convers Manage , vol.128 , pp. 28-33
    • Yang, Z.1    Liao, T.2    Zhou, Y.3    Lin, G.4    Chen, J.5
  • 14
    • 85006263549 scopus 로고    scopus 로고
    • Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis
    • H. Nami, E. Akrami, and F. Ranjbar. “Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis.”Applied Thermal Engineering114 (2017): 631-638.
    • (2017) Appl Therm Eng , vol.114 , pp. 631-638
    • Nami, H.1    Akrami, E.2    Ranjbar, F.3
  • 15
    • 56049088972 scopus 로고    scopus 로고
    • Energy and exergy analyses of a hybrid molten carbonate fuel cell system
    • R. Rashidi, I. Dincer, and P. Berg. “Energy and exergy analyses of a hybrid molten carbonate fuel cell system.”Journal of Power Sources185, no. 2 (2008): 1107-1114.
    • (2008) J Power Sources , vol.185 , Issue.2 , pp. 1107-1114
    • Rashidi, R.1    Dincer, I.2    Berg, P.3
  • 17
    • 84962374942 scopus 로고    scopus 로고
    • 2 capture by integrating molten carbonate fuel cell system
    • L. Duan, K. Xia, T. Feng, S. Jia, and J. Bian. “Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system.”Energy117 (2016): 578-589.
    • (2016) Energy , vol.117 , pp. 578-589
    • Duan, L.1    Xia, K.2    Feng, T.3    Jia, S.4    Bian, J.5
  • 18
    • 84926483486 scopus 로고    scopus 로고
    • Energy and exergy analysis and optimal design of the hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process
    • Yazdanfar, Javad, Mehdi Mehrpooya, Hossein Yousefi, and Ali Palizdar. “Energy and exergy analysis and optimal design of the hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process.”Energy Conversion and Management98 (2015): 15-27.
    • (2015) Energy Convers Manage , vol.98 , pp. 15-27
    • Yazdanfar, J.1    Mehrpooya, M.2    Yousefi, H.3    Palizdar, A.4
  • 19
    • 84871774068 scopus 로고    scopus 로고
    • Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer
    • A. Vatani, A. Khazaeli, R. Roshandel, and M.H. Panjeshahi. “Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer.”Energy Conversion and Management67 (2013): 197-207.
    • (2013) Energy Convers Manage , vol.67 , pp. 197-207
    • Vatani, A.1    Khazaeli, A.2    Roshandel, R.3    Panjeshahi, M.H.4
  • 20
    • 84949656212 scopus 로고    scopus 로고
    • 2 Brayton cycle and compared with a bottoming Organic Rankine Cycle
    • A. Baronci, G. Messina, S.J. McPhail, and A. Moreno. “Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle.”Energy93 (2015): 1063-1073.
    • (2015) Energy , vol.93 , pp. 1063-1073
    • Baronci, A.1    Messina, G.2    McPhail, S.J.3    Moreno, A.4
  • 21
    • 84989862055 scopus 로고    scopus 로고
    • Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell–supercritical carbon dioxide–organic Rankin cycle integrated power system using liquefied natural gas as heat sink
    • S.M.S. Mahmoudi, and A. R. Ghavimi. “Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell–supercritical carbon dioxide–organic Rankin cycle integrated power system using liquefied natural gas as heat sink.”Applied Thermal Engineering107 (2016): 1219-1232.
    • (2016) Appl Therm Eng , vol.107 , pp. 1219-1232
    • Mahmoudi, S.M.S.1    Ghavimi, A.R.2
  • 22
    • 85027535493 scopus 로고    scopus 로고
    • Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process
    • M. Mehrpooya, H. Ansarinasab, M.M.M. Sharifzadeh, and M.A. Rosen. “Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process.”Journal of Power Sources364 (2017): 299-315.
    • (2017) J Power Sources , vol.364 , pp. 299-315
    • Mehrpooya, M.1    Ansarinasab, H.2    Sharifzadeh, M.M.M.3    Rosen, M.A.4
  • 23
    • 84919819574 scopus 로고    scopus 로고
    • Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system
    • A.H. Mamaghani, B. Najafi, A. Shirazi, and F. Rinaldi. “Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system.”Applied Thermal Engineering77 (2015): 1-11.
    • (2015) Appl Therm Eng , vol.77 , pp. 1-11
    • Mamaghani, A.H.1    Najafi, B.2    Shirazi, A.3    Rinaldi, F.4
  • 24
    • 84926161346 scopus 로고    scopus 로고
    • 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system
    • A.H. Mamaghani, B. Najafi, A. Shirazi, and F. Rinaldi. “4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system.”Energy82 (2015): 650-663.
    • (2015) Energy , vol.82 , pp. 650-663
    • Mamaghani, A.H.1    Najafi, B.2    Shirazi, A.3    Rinaldi, F.4
  • 25
    • 79951513621 scopus 로고    scopus 로고
    • Energy and exergy analyses of GAX and GAX hybrid absorption refrigeration cycles
    • M. Yari, A. Zarin, and S. M. S. Mahmoudi. “Energy and exergy analyses of GAX and GAX hybrid absorption refrigeration cycles.”Renewable Energy36, no. 7 (2011).
    • (2011) Renewable Energy , vol.36 , Issue.7
    • Yari, M.1    Zarin, A.2    Mahmoudi, S.M.S.3
  • 26
    • 49849106441 scopus 로고    scopus 로고
    • Studies of compressor pressure ratio effect on GAXAC (generator–absorber–exchange absorption compression) cooler
    • M. Udayakumar. “Studies of compressor pressure ratio effect on GAXAC (generator–absorber–exchange absorption compression) cooler.”Applied Energy85, no. 12 (2008): 1163-1172.
    • (2008) Appl Energy , vol.85 , Issue.12 , pp. 1163-1172
    • Udayakumar, M.1
  • 27
    • 0003909998 scopus 로고    scopus 로고
    • Absorption chillers and heat pumps
    • 2d ed. CRC Press
    • K.E. Herold, R. Radermacher, and S.A. Klein. Absorption chillers and heat pumps. 2d ed., CRC Press, 2016.
    • (2016)
    • Herold, K.E.1    Radermacher, R.2    Klein, S.A.3
  • 28
    • 85053771234 scopus 로고    scopus 로고
    • Performance assessment and optimization of a humidification dehumidification (HDH) system driven by absorption-compression heat pump cycle
    • H. Rostamzadeh, A.S. Namin, H. Ghaebi, and M. Amidpour. “Performance assessment and optimization of a humidification dehumidification (HDH) system driven by absorption-compression heat pump cycle.”Desalination447 (2018): 84-101.
    • (2018) Desalination , vol.447 , pp. 84-101
    • Rostamzadeh, H.1    Namin, A.S.2    Ghaebi, H.3    Amidpour, M.4
  • 29
    • 84905189686 scopus 로고    scopus 로고
    • Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell
    • F. Ranjbar, A. Chitsaz, S. M. S. Mahmoudi, S. Khalilarya, and M.A. Rosen. “Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell.” Energy Conversion and Management 87 (2014): 318-327.
    • (2014) Energy Convers Manage , vol.87 , pp. 318-327
    • Ranjbar, F.1    Chitsaz, A.2    Mahmoudi, S.M.S.3    Khalilarya, S.4    Rosen, M.A.5
  • 30
    • 84945135362 scopus 로고    scopus 로고
    • Exergoeconomic analysis of a trigeneration system driven by a solid oxide fuel cell
    • A. Chitsaz, A. S. Mehr, and S.M.S. Mahmoudi. “Exergoeconomic analysis of a trigeneration system driven by a solid oxide fuel cell.” Energy Conversion and Management 106 (2015): 921-931.
    • (2015) Energy Convers Manage , vol.106 , pp. 921-931
    • Chitsaz, A.1    Mehr, A.S.2    Mahmoudi, S.M.S.3
  • 31
    • 84928947759 scopus 로고    scopus 로고
    • Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell
    • A. Chitsaz, S.M.S. Mahmoudi, and M.A. Rosen. “Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell.” Applied Thermal Engineering 86 (2015): 81-90.
    • (2015) Appl Therm Eng , vol.86 , pp. 81-90
    • Chitsaz, A.1    Mahmoudi, S.M.S.2    Rosen, M.A.3
  • 32
    • 84865426111 scopus 로고    scopus 로고
    • Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle
    • F.A. Al-Sulaiman, I. Dincer, and F. Hamdullahpur. “Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle.” Energy 45, no. 1 (2012): 975-985.
    • (2012) Energy , vol.45 , Issue.1 , pp. 975-985
    • Al-Sulaiman, F.A.1    Dincer, I.2    Hamdullahpur, F.3
  • 33
    • 84876148620 scopus 로고    scopus 로고
    • Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications
    • F.A. Al-Sulaiman, I. Dincer, and F. Hamdullahpur. “Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications.” Energy conversion and management 69 (2013): 209-216.
    • (2013) Energy Convers Manage , vol.69 , pp. 209-216
    • Al-Sulaiman, F.A.1    Dincer, I.2    Hamdullahpur, F.3
  • 34
    • 78649987697 scopus 로고    scopus 로고
    • Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production
    • F.A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer. “Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production.” Applied Thermal Engineering 31, no. 4 (2011): 439-446.
    • (2011) Appl Therm Eng , vol.31 , Issue.4 , pp. 439-446
    • Al-Sulaiman, F.A.1    Hamdullahpur, F.2    Dincer, I.3
  • 35
    • 84979584553 scopus 로고    scopus 로고
    • Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy
    • J. Wang, and Y. Yang. “Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy.” Energy conversion and management 124 (2016): 566-577.
    • (2016) Energy Convers Manage , vol.124 , pp. 566-577
    • Wang, J.1    Yang, Y.2
  • 36
    • 85067073759 scopus 로고    scopus 로고
    • Investigation of a novel multigeneration system driven by a SOFC for electricity and fresh water production
    • N. Chitgar, M.A. Emadi, A. Chitsaz, and M.A. Rosen. “Investigation of a novel multigeneration system driven by a SOFC for electricity and fresh water production.” Energy Conversion and Management 196 (2019): 296-310.
    • (2019) Energy Convers Manage , vol.196 , pp. 296-310
    • Chitgar, N.1    Emadi, M.A.2    Chitsaz, A.3    Rosen, M.A.4
  • 37
    • 85047833482 scopus 로고    scopus 로고
    • Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant
    • O.J. Ogorure, C.O.C. Oko, E.O. Diemuodeke, and K. Owebor. “Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant.” Energy conversion and management 171 (2018): 222-240.
    • (2018) Energy Convers Manage , vol.171 , pp. 222-240
    • Ogorure, O.J.1    Oko, C.O.C.2    Diemuodeke, E.O.3    Owebor, K.4
  • 38
    • 0003511899 scopus 로고    scopus 로고
    • Thermodynamics: an engineering approach
    • 9th ed. McGraw Hill
    • Y.A. Cengel, M.A. Boles, and M. Kanoglu. Thermodynamics: an engineering approach. 9th ed., McGraw Hill, 2019.
    • (2019)
    • Cengel, Y.A.1    Boles, M.A.2    Kanoglu, M.3
  • 39
    • 0003746058 scopus 로고    scopus 로고
    • Thermal design and optimization
    • John Wiley & Sons
    • A. Bejan, G. Tsatsaronis, and M.J. Moran. Thermal design and optimization. John Wiley & Sons, 1996.
    • (1996)
    • Bejan, A.1    Tsatsaronis, G.2    Moran, M.J.3
  • 41
    • 84903760448 scopus 로고    scopus 로고
    • Optimum thermal design of humidification dehumidification desalination systems
    • M.H. Sharqawy, M.A. Antar, S.M. Zubair, and A.M. Elbashir. “Optimum thermal design of humidification dehumidification desalination systems.” Desalination 349 (2014): 10-21.
    • (2014) Desalination , vol.349 , pp. 10-21
    • Sharqawy, M.H.1    Antar, M.A.2    Zubair, S.M.3    Elbashir, A.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.