-
1
-
-
85020279760
-
Personal web revisitation by context and content keywords with relevance feedback
-
L. Jin, L. Feng, G. Liu, C. Wang, Personal web revisitation by context and content keywords with relevance feedback, IEEE Transactions on Knowledge and Data Engineering 29 (2017) 1508–1521
-
(2017)
IEEE Trans. Knowl. Data Eng.
, vol.29
, Issue.7
, pp. 1508-1521
-
-
Jin, L.1
Feng, L.2
Liu, G.3
Wang, C.4
-
2
-
-
84976613294
-
Collaborative filtering via sparse markov random fields
-
T. Tran, D. Phung, S. Venkatesh, Collaborative filtering via sparse markov random fields, Information Sciences 369 (2016) 221–237
-
(2016)
Inform. Sci.
, vol.369
, pp. 221-237
-
-
Tran, T.1
Phung, D.2
Venkatesh, S.3
-
3
-
-
84988640362
-
Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases
-
B. Bhasuran, G. Murugesan, S. Abdulkadhar, J. Natarajan, Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases, Journal of Biomedical Informatics 64 (2016) 1–9
-
(2016)
J. Biomed. Inform.
, vol.64
, pp. 1-9
-
-
Bhasuran, B.1
Murugesan, G.2
Abdulkadhar, S.3
Natarajan, J.4
-
4
-
-
84977275397
-
Real-time blind source separation system with applications to distant speech recognition
-
A. E. Ferreira, D. Alarcao, Real-time blind source separation system with applications to distant speech recognition, Applied Acoustics 113 (2016) 170–184
-
(2016)
Appl. Acoust.
, vol.113
, pp. 170-184
-
-
Ferreira, A.E.1
Alarcao, D.2
-
5
-
-
85036623598
-
Weight-based rotation forest for hyperspectral image classification
-
W. Feng, W. Bao, Weight-based rotation forest for hyperspectral image classification, IEEE Geoscience and Remote Sensing Letters 14 (2017) 2167–2171
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.11
, pp. 2167-2171
-
-
Feng, W.1
Bao, W.2
-
6
-
-
84926155931
-
Transfer learning using computational intelligence: A survey
-
J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, G. Zhang, Transfer learning using computational intelligence: A survey, Knowledge-Based Systems 80 (2015) 14–23
-
(2015)
Knowl.-Based Syst.
, vol.80
, pp. 14-23
-
-
Lu, J.1
Behbood, V.2
Hao, P.3
Zuo, H.4
Xue, S.5
Zhang, G.6
-
7
-
-
36148977230
-
Support vector machine-based multi-source multi-attribute information integration for situation assessment
-
J. Lu, X. Yang, G. Zhang, Support vector machine-based multi-source multi-attribute information integration for situation assessment, Expert Systems with Applications 34 (2008) 1333–1340
-
(2008)
Expert Syst. Appl.
, vol.34
, Issue.2
, pp. 1333-1340
-
-
Lu, J.1
Yang, X.2
Zhang, G.3
-
8
-
-
85042299569
-
Increasing diversity in random forest learning algorithm via imprecise probabilities
-
J. Abelln, C. J. Mantas, J. G. Castellano, S. Moral-Garca, Increasing diversity in random forest learning algorithm via imprecise probabilities, Expert Systems with Applications 97 (2018) 228–243
-
(2018)
Expert Syst. Appl.
, vol.97
, pp. 228-243
-
-
Abelln, J.1
Mantas, C.J.2
Castellano, J.G.3
Moral-Garca, S.4
-
9
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
85011884671
-
Ensemble learning for data stream analysis: A survey
-
B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Wozniak, Ensemble learning for data stream analysis: A survey, Information Fusion 37 (2017) 132–156
-
(2017)
Inf. Fusion
, vol.37
, pp. 132-156
-
-
Krawczyk, B.1
Minku, L.L.2
Gama, J.3
Stefanowski, J.4
Wozniak, M.5
-
11
-
-
85055384819
-
Ensemble Methods: Foundations and Algorithms
-
Chapman and Hall/CRC
-
Z. H. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman and Hall/CRC, 2012
-
(2012)
, pp. 236
-
-
Zhou, Z.H.1
-
12
-
-
0003802343
-
Classification and Regression Trees
-
Publisher: Wadsworth
-
L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Publisher: Wadsworth, 1984
-
(1984)
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
13
-
-
85019456114
-
Adjusted weight voting algorithm for random forests in handling missing values
-
J. Xia, S. Zhang, G. Cai, L. Li, Q. Pan, J. Yan, G. Ning, Adjusted weight voting algorithm for random forests in handling missing values, Pattern Recognition 69 (2017) 52–60
-
(2017)
Pattern Recognit.
, vol.69
, pp. 52-60
-
-
Xia, J.1
Zhang, S.2
Cai, G.3
Li, L.4
Pan, Q.5
Yan, J.6
Ning, G.7
-
14
-
-
85036627061
-
A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning
-
R. Houborg, M. F. McCabe, A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning, ISPRS Journal of Photogrammetry and Remote Sensing 135 (2018) 173–188
-
(2018)
ISPRS J. Photogramm. Remote Sens.
, vol.135
, pp. 173-188
-
-
Houborg, R.1
McCabe, M.F.2
-
15
-
-
85048278466
-
Assessment of antarctic moss health from multi-sensor uas imagery with random forest modelling
-
D. Turner, A. Lucieer, Z. Malenovsk, D. King, S. A. Robinson, Assessment of antarctic moss health from multi-sensor uas imagery with random forest modelling, International Journal of Applied Earth Observation and Geoinformation 68 (2018) 168–179
-
(2018)
Int. J. Appl. Earth Obs. Geoinf.
, vol.68
, pp. 168-179
-
-
Turner, D.1
Lucieer, A.2
Malenovsk, Z.3
King, D.4
Robinson, S.A.5
-
16
-
-
0035478854
-
Random forests
-
L. Breiman, Random forests, Machine Learning 45 (2001) 5–32
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
17
-
-
85018324851
-
Considering diversity and accuracy simultaneously for ensemble pruning
-
Q. Dai, R. Ye, Z. Liu, Considering diversity and accuracy simultaneously for ensemble pruning, Applied Soft Computing 58 (2017) 75–91
-
(2017)
Appl. Soft Comput.
, vol.58
, pp. 75-91
-
-
Dai, Q.1
Ye, R.2
Liu, Z.3
-
18
-
-
85021887039
-
Margin & diversity based ordering ensemble pruning
-
H. Guo, H. Liu, R. Li, C. Wu, Y. Guo, M. Xu, Margin & diversity based ordering ensemble pruning, Neurocomputing 275 (2018) 237–246
-
(2018)
Neurocomputing
, vol.275
, pp. 237-246
-
-
Guo, H.1
Liu, H.2
Li, R.3
Wu, C.4
Guo, Y.5
Xu, M.6
-
19
-
-
85047080680
-
Class imbalance ensemble learning based on the margin theory
-
W. Feng, W. Huang, J. Ren, Class imbalance ensemble learning based on the margin theory, Applied Sciences 8 (2018)
-
(2018)
Appl. Sci.
, vol.8
, Issue.815
-
-
Feng, W.1
Huang, W.2
Ren, J.3
-
20
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. Kuncheva, C. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181–207
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
21
-
-
85031774716
-
An ensemble deep learning based approach for red lesion detection in fundus images
-
J. I. Orlando, E. P., M. Fresno, M. B. Blaschko, An ensemble deep learning based approach for red lesion detection in fundus images, Computer Methods and Programs in Biomedicine 153 (2018) 115–127
-
(2018)
Comput. Methods Programs Biomed.
, vol.153
, pp. 115-127
-
-
Orlando, J.I.1
Fresno, E.P.M.2
Blaschko, M.B.3
-
23
-
-
85009165593
-
Learning from class-imbalanced data: Review of methods and applications
-
H. Guo, Y. Li, S. Jennifer, M. Gu, Y. Huang, B. Gong, Learning from class-imbalanced data: Review of methods and applications, Expert Systems with Applications 73 (2017) 220–239
-
(2017)
Expert Syst. Appl.
, vol.73
, pp. 220-239
-
-
Guo, H.1
Li, Y.2
Jennifer, S.3
Gu, M.4
Huang, Y.5
Gong, B.6
-
24
-
-
85071336314
-
-
Using Random Forest to Learn Imbalanced Data, Technical Report 666, Department of Statistics, University of California, Berkeley.
-
C. Chen, A. Liaw, L. Breiman, Using Random Forest to Learn Imbalanced Data, Technical Report 666, Department of Statistics, University of California, Berkeley., 2004.
-
(2004)
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
25
-
-
84862295459
-
Dynamic random forests
-
S. Bernard, S. Adam, L. Heutte, Dynamic random forests, Pattern Recognition Letters 33 (2012) 1580–1586
-
(2012)
Pattern Recognit. Lett.
, vol.33
, Issue.12
, pp. 1580-1586
-
-
Bernard, S.1
Adam, S.2
Heutte, L.3
-
26
-
-
85008237793
-
Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples
-
C. Zhang, X. Bian, P. Liu, X. Tan, Q. Fan, W. Liu, L. Lin, Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples, Chemometrics and Intelligent Laboratory Systems 161 (2017) 43–48
-
(2017)
Chemometr. Intell. Lab. Syst.
, vol.161
, pp. 43-48
-
-
Zhang, C.1
Bian, X.2
Liu, P.3
Tan, X.4
Fan, Q.5
Liu, W.6
Lin, L.7
-
27
-
-
33644848401
-
An application of subagging for the improvement of prediction accuracy of multivariate calibration models
-
R. K. H. Galvao, M. C. U. Araujo, M. N. Martins, G. E. Jose, M. J. C. Pontes, E. C. Silva, T. C. B. Saldanha, An application of subagging for the improvement of prediction accuracy of multivariate calibration models, Chemometrics and Intelligent Laboratory Systems 81 (2006) 60–67
-
(2006)
Chemometr. Intell. Lab. Syst.
, vol.81
, Issue.1
, pp. 60-67
-
-
Galvao, R.K.H.1
Araujo, M.C.U.2
Martins, M.N.3
Jose, G.E.4
Pontes, M.J.C.5
Silva, E.C.6
Saldanha, T.C.B.7
-
28
-
-
70349299929
-
Subagging for credit scoring models
-
G. Paleologo, A. Elisseeff, G. Antonini, Subagging for credit scoring models, European Journal of Operational Research 201 (2010) 490–499
-
(2010)
European J. Oper. Res.
, vol.201
, Issue.2
, pp. 490-499
-
-
Paleologo, G.1
Elisseeff, A.2
Antonini, G.3
-
29
-
-
85028618822
-
Random forests for big data
-
R. Genuer, J. Poggi, C. Tuleau-Malot, N. Villa-Vialaneix, Random forests for big data, Big Data Research 9 (2017) 28–46
-
(2017)
Big Data Res.
, vol.9
, pp. 28-46
-
-
Genuer, R.1
Poggi, J.2
Tuleau-Malot, C.3
Villa-Vialaneix, N.4
-
30
-
-
85071336734
-
-
Observations on bagging., Preprint.
-
A. Buja, W. Stuetzle, Observations on bagging., Preprint. (2002).
-
(2002)
-
-
Buja, A.1
Stuetzle, W.2
-
31
-
-
84902236815
-
Bagging, subagging and bragging for improving some prediction algorithms
-
Akritas M.G. Politis D.N. JAI Amsterdam
-
P. Buhlmann, Bagging, subagging and bragging for improving some prediction algorithms, in: M. G. Akritas, D. N. Politis (Eds.), Recent Advances and Trends in Nonparametric Statistics, JAI, Amsterdam, 2003, pp. 19–34
-
(2003)
Recent Advances and Trends in Nonparametric Statistics
, pp. 19-34
-
-
Buhlmann, P.1
-
32
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning 36 (1999) 85–103
-
(1999)
Mach. Learn.
, vol.36
, Issue.1
, pp. 85-103
-
-
Breiman, L.1
-
33
-
-
68949164781
-
Out-of-bag estimation of the optimal sample size in bagging
-
G. Martinez-Munoz, A. Suarez, Out-of-bag estimation of the optimal sample size in bagging, Pattern Recognition 43 (2010) 143–152
-
(2010)
Pattern Recognit.
, vol.43
, Issue.1
, pp. 143-152
-
-
Martinez-Munoz, G.1
Suarez, A.2
-
34
-
-
85071319896
-
-
Out-Of-Bag Estimation, Technical Report, University of California.
-
L. Breiman, Out-Of-Bag Estimation, Technical Report, University of California, 1996.
-
(1996)
-
-
Breiman, L.1
-
35
-
-
34249753618
-
Support-vector networks
-
C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273–297
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
36
-
-
33646417314
-
Improving generalization by data categorization
-
Springer Berlin Heidelberg
-
L. Li, A. Pratap, H. T. Lin, Y. S. Abu-Mostafa, Improving generalization by data categorization, in: Knowledge Discovery in Databases: PKDD 2005, volume 3721, Springer Berlin Heidelberg, 2005, pp. 157–168
-
(2005)
Knowledge Discovery in Databases: PKDD 2005, Vol. 3721
, pp. 157-168
-
-
Li, L.1
Pratap, A.2
Lin, H.T.3
Abu-Mostafa, Y.S.4
-
37
-
-
73849133622
-
Class conditional nearest neighbor for large margin instance selection
-
E. Marchiori, Class conditional nearest neighbor for large margin instance selection, Pattern Analysis and Machine Intelligence, IEEE Transactions on 32 (2010) 364–370
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.2
, pp. 364-370
-
-
Marchiori, E.1
-
38
-
-
85047072934
-
Hypothesis Margin Based Weighting for Feature Selection Using Boosting: Theory, Algorithms and Applications
-
(Ph.D. Thesis) Northeastern University
-
M. Alshawabkeh, Hypothesis margin based weighting for feature selection using boosting: theory, algorithms and applications, Ph.D. thesis, Northeastern University, 2013
-
(2013)
-
-
Alshawabkeh, M.1
-
39
-
-
84867873453
-
Dynamic classifier ensemble using classification confidence
-
L. J. Li, B. Zou, Q. H. Hu, X. Q. Wu, D. R. Yu, Dynamic classifier ensemble using classification confidence, Neurocomputing 99 (2013) 581–591
-
(2013)
Neurocomputing
, vol.99
, pp. 581-591
-
-
Li, L.J.1
Zou, B.2
Hu, Q.H.3
Wu, X.Q.4
Yu, D.R.5
-
40
-
-
77950861838
-
Boosting through optimization of margin distributions
-
C. H. Shen, H. X. Li, Boosting through optimization of margin distributions, Trans. Neur. Netw. 21 (2010) 659–666
-
(2010)
Trans. Neur. Netw.
, vol.21
, Issue.4
, pp. 659-666
-
-
Shen, C.H.1
Li, H.X.2
-
41
-
-
84862796962
-
Margin distribution based bagging pruning
-
Z. X. Xie, Y. Xu, Q. H. Hu, P. F. Zhu, Margin distribution based bagging pruning, Neurocomputing 85 (2012) 11–19
-
(2012)
Neurocomputing
, vol.85
, pp. 11-19
-
-
Xie, Z.X.1
Xu, Y.2
Hu, Q.H.3
Zhu, P.F.4
-
42
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: Synthetic minority over-sampling technique, J. Artif. Int. Res. 16 (2002) 321–357
-
(2002)
J. Artif. Int. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
43
-
-
85055271044
-
Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]
-
M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, J. Santos, Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier], IEEE Computational Intelligence Magazine 13 (2018) 59–76
-
(2018)
IEEE Comput. Intell. Mag.
, vol.13
, Issue.4
, pp. 59-76
-
-
Santos, M.S.1
Soares, J.P.2
Abreu, P.H.3
Araujo, H.4
Santos, J.5
-
44
-
-
0003450542
-
The Nature of Statistical Learning Theory
-
Springer-Verlag New York, Inc.
-
V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag New York, Inc., 1995
-
(1995)
-
-
Vapnik, V.1
-
45
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55 (1997) 119–139
-
(1997)
J. Comput. System Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
46
-
-
85156210264
-
Margin analysis of the lvq algorithm
-
MIT press
-
K. Crammer, R. Gilad-bachrach, A. Navot, N. Tishby, Margin analysis of the lvq algorithm, in: Advances in Neural Information Processing Systems 2002, MIT press, 2002, pp. 462–469
-
(2002)
Advances in Neural Information Processing Systems 2002
, pp. 462-469
-
-
Crammer, K.1
Gilad-bachrach, R.2
Navot, A.3
Tishby, N.4
-
47
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett, W. Lee, Boosting the margin: a new explanation for the effectiveness of voting methods, The Annals of Statistics 26 (1998) 1651–1686
-
(1998)
Ann. Statist.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
48
-
-
85071291768
-
-
Hyperparameters and tuning strategies for random forest, arXiv preprint.
-
P. Probst, M. Wright, A. Boulesteix, Hyperparameters and tuning strategies for random forest, arXiv preprint arXiv:1804.03515 (2018).
-
(2018)
-
-
Probst, P.1
Wright, M.2
Boulesteix, A.3
-
50
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
J. A. Saeź, B. Krawczyk, M. Wozniaḱ, Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets, Pattern Recognition 57 (2016) 164–178
-
(2016)
Pattern Recognit.
, vol.57
, pp. 164-178
-
-
Sáez, J.A.1
Krawczyk, B.2
Woźniak, M.3
-
52
-
-
85071301924
-
-
UCI machine learning repository.
-
A. Asuncion, D. Newman, UCI machine learning repository, 2007.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
53
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, Statistical comparisons of classifiers over multiple data sets., Journal of Machine Learning Research 7 (2006) 1–30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
54
-
-
84872812260
-
Class-imbalanced classifiers for high-dimensional data
-
L. Wei, J. J. Chen, Class-imbalanced classifiers for high-dimensional data., Briefings in Bioinformatics 14 (2013) 13–26
-
(2013)
Brief. Bioinform.
, vol.14
, Issue.1
, pp. 13-26
-
-
Wei, L.1
Chen, J.J.2
-
55
-
-
77953194816
-
On robustness of on-line boosting - a competitive study
-
C. Leistner, A. Saffari, P. M. Roth, H. Bischof, On robustness of on-line boosting - a competitive study, in: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1362–1369
-
(2009)
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops
, pp. 1362-1369
-
-
Leistner, C.1
Saffari, A.2
Roth, P.M.3
Bischof, H.4
-
56
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, The strength of weak learnability, Mach. Learn. 5 (1990) 197–227
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
|