메뉴 건너뛰기




Volumn 182, Issue , 2019, Pages

New margin-based subsampling iterative technique in modified random forests for classification

Author keywords

Classification; Diversity; Ensemble margin; Random forests; Sub sampling

Indexed keywords

ADAPTIVE BOOSTING; DECISION TREES; ITERATIVE METHODS; SUPPORT VECTOR MACHINES;

EID: 85071325715     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2019.07.016     Document Type: Article
Times cited : (54)

References (56)
  • 1
    • 85020279760 scopus 로고    scopus 로고
    • Personal web revisitation by context and content keywords with relevance feedback
    • L. Jin, L. Feng, G. Liu, C. Wang, Personal web revisitation by context and content keywords with relevance feedback, IEEE Transactions on Knowledge and Data Engineering 29 (2017) 1508–1521
    • (2017) IEEE Trans. Knowl. Data Eng. , vol.29 , Issue.7 , pp. 1508-1521
    • Jin, L.1    Feng, L.2    Liu, G.3    Wang, C.4
  • 2
    • 84976613294 scopus 로고    scopus 로고
    • Collaborative filtering via sparse markov random fields
    • T. Tran, D. Phung, S. Venkatesh, Collaborative filtering via sparse markov random fields, Information Sciences 369 (2016) 221–237
    • (2016) Inform. Sci. , vol.369 , pp. 221-237
    • Tran, T.1    Phung, D.2    Venkatesh, S.3
  • 3
    • 84988640362 scopus 로고    scopus 로고
    • Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases
    • B. Bhasuran, G. Murugesan, S. Abdulkadhar, J. Natarajan, Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases, Journal of Biomedical Informatics 64 (2016) 1–9
    • (2016) J. Biomed. Inform. , vol.64 , pp. 1-9
    • Bhasuran, B.1    Murugesan, G.2    Abdulkadhar, S.3    Natarajan, J.4
  • 4
    • 84977275397 scopus 로고    scopus 로고
    • Real-time blind source separation system with applications to distant speech recognition
    • A. E. Ferreira, D. Alarcao, Real-time blind source separation system with applications to distant speech recognition, Applied Acoustics 113 (2016) 170–184
    • (2016) Appl. Acoust. , vol.113 , pp. 170-184
    • Ferreira, A.E.1    Alarcao, D.2
  • 5
    • 85036623598 scopus 로고    scopus 로고
    • Weight-based rotation forest for hyperspectral image classification
    • W. Feng, W. Bao, Weight-based rotation forest for hyperspectral image classification, IEEE Geoscience and Remote Sensing Letters 14 (2017) 2167–2171
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.11 , pp. 2167-2171
    • Feng, W.1    Bao, W.2
  • 6
    • 84926155931 scopus 로고    scopus 로고
    • Transfer learning using computational intelligence: A survey
    • J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, G. Zhang, Transfer learning using computational intelligence: A survey, Knowledge-Based Systems 80 (2015) 14–23
    • (2015) Knowl.-Based Syst. , vol.80 , pp. 14-23
    • Lu, J.1    Behbood, V.2    Hao, P.3    Zuo, H.4    Xue, S.5    Zhang, G.6
  • 7
    • 36148977230 scopus 로고    scopus 로고
    • Support vector machine-based multi-source multi-attribute information integration for situation assessment
    • J. Lu, X. Yang, G. Zhang, Support vector machine-based multi-source multi-attribute information integration for situation assessment, Expert Systems with Applications 34 (2008) 1333–1340
    • (2008) Expert Syst. Appl. , vol.34 , Issue.2 , pp. 1333-1340
    • Lu, J.1    Yang, X.2    Zhang, G.3
  • 8
    • 85042299569 scopus 로고    scopus 로고
    • Increasing diversity in random forest learning algorithm via imprecise probabilities
    • J. Abelln, C. J. Mantas, J. G. Castellano, S. Moral-Garca, Increasing diversity in random forest learning algorithm via imprecise probabilities, Expert Systems with Applications 97 (2018) 228–243
    • (2018) Expert Syst. Appl. , vol.97 , pp. 228-243
    • Abelln, J.1    Mantas, C.J.2    Castellano, J.G.3    Moral-Garca, S.4
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 85055384819 scopus 로고    scopus 로고
    • Ensemble Methods: Foundations and Algorithms
    • Chapman and Hall/CRC
    • Z. H. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman and Hall/CRC, 2012
    • (2012) , pp. 236
    • Zhou, Z.H.1
  • 12
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Publisher: Wadsworth
    • L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Publisher: Wadsworth, 1984
    • (1984)
    • Breiman, L.1    Friedman, J.2    Olshen, R.3    Stone, C.4
  • 13
    • 85019456114 scopus 로고    scopus 로고
    • Adjusted weight voting algorithm for random forests in handling missing values
    • J. Xia, S. Zhang, G. Cai, L. Li, Q. Pan, J. Yan, G. Ning, Adjusted weight voting algorithm for random forests in handling missing values, Pattern Recognition 69 (2017) 52–60
    • (2017) Pattern Recognit. , vol.69 , pp. 52-60
    • Xia, J.1    Zhang, S.2    Cai, G.3    Li, L.4    Pan, Q.5    Yan, J.6    Ning, G.7
  • 14
    • 85036627061 scopus 로고    scopus 로고
    • A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning
    • R. Houborg, M. F. McCabe, A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning, ISPRS Journal of Photogrammetry and Remote Sensing 135 (2018) 173–188
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.135 , pp. 173-188
    • Houborg, R.1    McCabe, M.F.2
  • 15
    • 85048278466 scopus 로고    scopus 로고
    • Assessment of antarctic moss health from multi-sensor uas imagery with random forest modelling
    • D. Turner, A. Lucieer, Z. Malenovsk, D. King, S. A. Robinson, Assessment of antarctic moss health from multi-sensor uas imagery with random forest modelling, International Journal of Applied Earth Observation and Geoinformation 68 (2018) 168–179
    • (2018) Int. J. Appl. Earth Obs. Geoinf. , vol.68 , pp. 168-179
    • Turner, D.1    Lucieer, A.2    Malenovsk, Z.3    King, D.4    Robinson, S.A.5
  • 16
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Machine Learning 45 (2001) 5–32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 17
    • 85018324851 scopus 로고    scopus 로고
    • Considering diversity and accuracy simultaneously for ensemble pruning
    • Q. Dai, R. Ye, Z. Liu, Considering diversity and accuracy simultaneously for ensemble pruning, Applied Soft Computing 58 (2017) 75–91
    • (2017) Appl. Soft Comput. , vol.58 , pp. 75-91
    • Dai, Q.1    Ye, R.2    Liu, Z.3
  • 18
    • 85021887039 scopus 로고    scopus 로고
    • Margin & diversity based ordering ensemble pruning
    • H. Guo, H. Liu, R. Li, C. Wu, Y. Guo, M. Xu, Margin & diversity based ordering ensemble pruning, Neurocomputing 275 (2018) 237–246
    • (2018) Neurocomputing , vol.275 , pp. 237-246
    • Guo, H.1    Liu, H.2    Li, R.3    Wu, C.4    Guo, Y.5    Xu, M.6
  • 19
    • 85047080680 scopus 로고    scopus 로고
    • Class imbalance ensemble learning based on the margin theory
    • W. Feng, W. Huang, J. Ren, Class imbalance ensemble learning based on the margin theory, Applied Sciences 8 (2018)
    • (2018) Appl. Sci. , vol.8 , Issue.815
    • Feng, W.1    Huang, W.2    Ren, J.3
  • 20
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva, C. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181–207
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 21
    • 85031774716 scopus 로고    scopus 로고
    • An ensemble deep learning based approach for red lesion detection in fundus images
    • J. I. Orlando, E. P., M. Fresno, M. B. Blaschko, An ensemble deep learning based approach for red lesion detection in fundus images, Computer Methods and Programs in Biomedicine 153 (2018) 115–127
    • (2018) Comput. Methods Programs Biomed. , vol.153 , pp. 115-127
    • Orlando, J.I.1    Fresno, E.P.M.2    Blaschko, M.B.3
  • 23
    • 85009165593 scopus 로고    scopus 로고
    • Learning from class-imbalanced data: Review of methods and applications
    • H. Guo, Y. Li, S. Jennifer, M. Gu, Y. Huang, B. Gong, Learning from class-imbalanced data: Review of methods and applications, Expert Systems with Applications 73 (2017) 220–239
    • (2017) Expert Syst. Appl. , vol.73 , pp. 220-239
    • Guo, H.1    Li, Y.2    Jennifer, S.3    Gu, M.4    Huang, Y.5    Gong, B.6
  • 24
    • 85071336314 scopus 로고    scopus 로고
    • Using Random Forest to Learn Imbalanced Data, Technical Report 666, Department of Statistics, University of California, Berkeley.
    • C. Chen, A. Liaw, L. Breiman, Using Random Forest to Learn Imbalanced Data, Technical Report 666, Department of Statistics, University of California, Berkeley., 2004.
    • (2004)
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 26
    • 85008237793 scopus 로고    scopus 로고
    • Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples
    • C. Zhang, X. Bian, P. Liu, X. Tan, Q. Fan, W. Liu, L. Lin, Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples, Chemometrics and Intelligent Laboratory Systems 161 (2017) 43–48
    • (2017) Chemometr. Intell. Lab. Syst. , vol.161 , pp. 43-48
    • Zhang, C.1    Bian, X.2    Liu, P.3    Tan, X.4    Fan, Q.5    Liu, W.6    Lin, L.7
  • 30
    • 85071336734 scopus 로고    scopus 로고
    • Observations on bagging., Preprint.
    • A. Buja, W. Stuetzle, Observations on bagging., Preprint. (2002).
    • (2002)
    • Buja, A.1    Stuetzle, W.2
  • 31
    • 84902236815 scopus 로고    scopus 로고
    • Bagging, subagging and bragging for improving some prediction algorithms
    • Akritas M.G. Politis D.N. JAI Amsterdam
    • P. Buhlmann, Bagging, subagging and bragging for improving some prediction algorithms, in: M. G. Akritas, D. N. Politis (Eds.), Recent Advances and Trends in Nonparametric Statistics, JAI, Amsterdam, 2003, pp. 19–34
    • (2003) Recent Advances and Trends in Nonparametric Statistics , pp. 19-34
    • Buhlmann, P.1
  • 32
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning 36 (1999) 85–103
    • (1999) Mach. Learn. , vol.36 , Issue.1 , pp. 85-103
    • Breiman, L.1
  • 33
    • 68949164781 scopus 로고    scopus 로고
    • Out-of-bag estimation of the optimal sample size in bagging
    • G. Martinez-Munoz, A. Suarez, Out-of-bag estimation of the optimal sample size in bagging, Pattern Recognition 43 (2010) 143–152
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 143-152
    • Martinez-Munoz, G.1    Suarez, A.2
  • 34
    • 85071319896 scopus 로고    scopus 로고
    • Out-Of-Bag Estimation, Technical Report, University of California.
    • L. Breiman, Out-Of-Bag Estimation, Technical Report, University of California, 1996.
    • (1996)
    • Breiman, L.1
  • 35
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273–297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 37
    • 73849133622 scopus 로고    scopus 로고
    • Class conditional nearest neighbor for large margin instance selection
    • E. Marchiori, Class conditional nearest neighbor for large margin instance selection, Pattern Analysis and Machine Intelligence, IEEE Transactions on 32 (2010) 364–370
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.2 , pp. 364-370
    • Marchiori, E.1
  • 38
    • 85047072934 scopus 로고    scopus 로고
    • Hypothesis Margin Based Weighting for Feature Selection Using Boosting: Theory, Algorithms and Applications
    • (Ph.D. Thesis) Northeastern University
    • M. Alshawabkeh, Hypothesis margin based weighting for feature selection using boosting: theory, algorithms and applications, Ph.D. thesis, Northeastern University, 2013
    • (2013)
    • Alshawabkeh, M.1
  • 39
    • 84867873453 scopus 로고    scopus 로고
    • Dynamic classifier ensemble using classification confidence
    • L. J. Li, B. Zou, Q. H. Hu, X. Q. Wu, D. R. Yu, Dynamic classifier ensemble using classification confidence, Neurocomputing 99 (2013) 581–591
    • (2013) Neurocomputing , vol.99 , pp. 581-591
    • Li, L.J.1    Zou, B.2    Hu, Q.H.3    Wu, X.Q.4    Yu, D.R.5
  • 40
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • C. H. Shen, H. X. Li, Boosting through optimization of margin distributions, Trans. Neur. Netw. 21 (2010) 659–666
    • (2010) Trans. Neur. Netw. , vol.21 , Issue.4 , pp. 659-666
    • Shen, C.H.1    Li, H.X.2
  • 41
    • 84862796962 scopus 로고    scopus 로고
    • Margin distribution based bagging pruning
    • Z. X. Xie, Y. Xu, Q. H. Hu, P. F. Zhu, Margin distribution based bagging pruning, Neurocomputing 85 (2012) 11–19
    • (2012) Neurocomputing , vol.85 , pp. 11-19
    • Xie, Z.X.1    Xu, Y.2    Hu, Q.H.3    Zhu, P.F.4
  • 43
    • 85055271044 scopus 로고    scopus 로고
    • Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]
    • M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, J. Santos, Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier], IEEE Computational Intelligence Magazine 13 (2018) 59–76
    • (2018) IEEE Comput. Intell. Mag. , vol.13 , Issue.4 , pp. 59-76
    • Santos, M.S.1    Soares, J.P.2    Abreu, P.H.3    Araujo, H.4    Santos, J.5
  • 44
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer-Verlag New York, Inc.
    • V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag New York, Inc., 1995
    • (1995)
    • Vapnik, V.1
  • 45
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55 (1997) 119–139
    • (1997) J. Comput. System Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 47
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, W. Lee, Boosting the margin: a new explanation for the effectiveness of voting methods, The Annals of Statistics 26 (1998) 1651–1686
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 48
    • 85071291768 scopus 로고    scopus 로고
    • Hyperparameters and tuning strategies for random forest, arXiv preprint.
    • P. Probst, M. Wright, A. Boulesteix, Hyperparameters and tuning strategies for random forest, arXiv preprint arXiv:1804.03515 (2018).
    • (2018)
    • Probst, P.1    Wright, M.2    Boulesteix, A.3
  • 50
    • 84979464666 scopus 로고    scopus 로고
    • Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
    • J. A. Saeź, B. Krawczyk, M. Wozniaḱ, Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets, Pattern Recognition 57 (2016) 164–178
    • (2016) Pattern Recognit. , vol.57 , pp. 164-178
    • Sáez, J.A.1    Krawczyk, B.2    Woźniak, M.3
  • 52
    • 85071301924 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • A. Asuncion, D. Newman, UCI machine learning repository, 2007.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 53
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets., Journal of Machine Learning Research 7 (2006) 1–30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 54
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • L. Wei, J. J. Chen, Class-imbalanced classifiers for high-dimensional data., Briefings in Bioinformatics 14 (2013) 13–26
    • (2013) Brief. Bioinform. , vol.14 , Issue.1 , pp. 13-26
    • Wei, L.1    Chen, J.J.2
  • 56
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, The strength of weak learnability, Mach. Learn. 5 (1990) 197–227
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.