-
1
-
-
85051451932
-
-
2nd ed. Boca Raton, FL, USA CRC Press
-
P. Mather and B. Tso, Eds., Classification Methods for Remotely Sensed Data, 2nd ed. Boca Raton, FL, USA: CRC Press, 2016.
-
(2016)
Classification Methods for Remotely Sensed Data
-
-
Mather, P.1
Tso, B.2
-
2
-
-
85047080680
-
Class imbalance ensemble learning based on the margin theory
-
W. Feng, W. Huang, and J. Ren, "Class imbalance ensemble learning based on the margin theory, " Appl. Sci., vol. 8, no. 5, 2018.
-
(2018)
Appl. Sci
, vol.8
, Issue.5
-
-
Feng, W.1
Huang, W.2
Ren, J.3
-
3
-
-
85043364952
-
Dynamic ensemble selection for multi-class imbalanced datasets
-
S. García, Z. Zhang, A. Altalhi, S. Alshomrani, and F. Herrera, "Dynamic ensemble selection for multi-class imbalanced datasets, " Inf. Sci., vol. 445-446, pp. 22-37, 2018.
-
(2018)
Inf. Sci
, vol.445-446
, pp. 22-37
-
-
García, S.1
Zhang, Z.2
Altalhi, A.3
Alshomrani, S.4
Herrera, F.5
-
4
-
-
84907442805
-
Imbalanced hyperspectral image classification based on maximum margin
-
Mar
-
T. Sun, L. Jiao, J. Feng, F. Liu, and X. Zhang, "Imbalanced hyperspectral image classification based on maximum margin, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3, pp. 522-526, Mar. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, Issue.3
, pp. 522-526
-
-
Sun, T.1
Jiao, L.2
Feng, J.3
Liu, F.4
Zhang, X.5
-
5
-
-
67650505046
-
Diversity analysis on imbalanced data sets by using ensemble models
-
TN, USA Mar
-
S.Wang and X. Yao, "Diversity analysis on imbalanced data sets by using ensemble models, " in Proc. IEEE Symp. Comput. Intell. Data Mining., Nashville, TN, USA, Mar. 2009, pp. 324-331.
-
(2009)
Proc IEEE Symp. Comput. Intell. Data Mining., Nashville
, pp. 324-331
-
-
Wang, S.1
Yao, X.2
-
6
-
-
85043605198
-
Learning from imbalanced data: Open challenges and future directions
-
B. Krawczyk, "Learning from imbalanced data: Open challenges and future directions, " Progress Artif. Intell., vol. 5, no. 4, pp. 221-232, 2016.
-
(2016)
Progress Artif. Intell
, vol.5
, Issue.4
, pp. 221-232
-
-
Krawczyk, B.1
-
7
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
J.A. Sáez, "Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets, " Pattern Recognit., vol. 57, pp. 164-178, 2016.
-
(2016)
Pattern Recognit
, vol.57
, pp. 164-178
-
-
Sáez, J.A.1
-
8
-
-
85048303100
-
An empirical comparison on state-of-The-Art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme
-
J. Bi and C. Zhang, "An empirical comparison on state-of-The-Art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme, " Knowl.-Based Syst., vol. 158, pp. 81-93, 2018.
-
(2018)
Knowl.-Based Syst
, vol.158
, pp. 81-93
-
-
Bi, J.1
Zhang, C.2
-
9
-
-
68549133155
-
Learning from imbalanced data
-
Sep
-
H. B. He and E. A. Garcia, "Learning from imbalanced data, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.B.1
Garcia, E.A.2
-
10
-
-
85028702271
-
Kernel based online learning for imbalance multiclass classification
-
D. Shuya et al., "Kernel based online learning for imbalance multiclass classification, " Neurocomputing, vol. 277, pp. 139-148, 2018.
-
(2018)
Neurocomputing
, vol.277
, pp. 139-148
-
-
Shuya, D.1
-
11
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification." in
-
S. Ertekin, J. Huang, L. Bottou, and C. L. Giles, "Learning on the border: Active learning in imbalanced data classification." in Proc. 16th ACM Conf. Inf. Knowl. Manage., Lisbon, Portugal, 2007, pp. 127-136.
-
(2007)
Proc. 16th ACM Conf. Inf. Knowl. Manage., Lisbon, Portugal
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, C.L.4
-
12
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging-, boosting, and hybrid-based approaches
-
Jul
-
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, "A review on ensembles for the class imbalance problem: Bagging-, boosting, and hybrid-based approaches, " IEEE Trans. Syst. Man, Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 463-484, Jul. 2012.
-
(2012)
IEEE Trans. Syst. Man, Cybern. C, Appl. Rev
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
13
-
-
85036623598
-
Weight-based rotation forest for hyperspectral image classification
-
Nov
-
W. Feng andW.Bao, "Weight-based rotation forest for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2167-2171, Nov. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, Issue.11
, pp. 2167-2171
-
-
Feng, W.1
Bao, W.2
-
14
-
-
85042400496
-
A study on combining dynamic selection and data preprocessing for imbalance learning
-
A. Roy, R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, "A study on combining dynamic selection and data preprocessing for imbalance learning, " Neurocomputing, vol. 286, pp. 179-192, 2018.
-
(2018)
Neurocomputing
, vol.286
, pp. 179-192
-
-
Roy, A.1
Cruz, R.M.2
Sabourin, R.3
Cavalcanti, G.D.4
-
15
-
-
85049450664
-
Improving imbalanced learning through a heuristic oversampling method based on k-means and smote
-
G. Douzas, F. Bacao, and F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and smote, " Inf. Sci., vol. 465, pp. 1-20, 2018.
-
(2018)
Inf. Sci
, vol.465
, pp. 1-20
-
-
Douzas, G.1
Bacao, F.2
Last, F.3
-
16
-
-
84956598937
-
Class noise removal and correction for image classification using ensemble margin
-
Sep
-
W. Feng and S. Boukir, "Class noise removal and correction for image classification using ensemble margin, " in Proc. IEEE Int. Conf. Image Process., Quebec City, QC, Canada, Sep. 2015, pp. 4698-4702.
-
(2015)
Proc IEEE Int. Conf. Image Process., Quebec City, QC, Canada
, pp. 4698-4702
-
-
Feng, W.1
Boukir, S.2
-
17
-
-
85008471279
-
Hyperspectral image classification with rotation
-
random forest via kpca Apr
-
J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot, "Hyperspectral image classification with rotation random forest via kpca, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1601-1609, Apr. 2017.
-
(2017)
IEEE J. Select. Topics Appl. Earth Observ. Remote Sens
, vol.10
, Issue.4
, pp. 1601-1609
-
-
Xia, J.1
Falco, N.2
Benediktsson, J.A.3
Du, P.4
Chanussot, J.5
-
18
-
-
85030640770
-
Random forest ensembles and extended multiextinction profiles for hyperspectral image classification
-
Jan
-
J. Xia, P. Ghamisi, N. Yokoya, and A. Iwasaki, "Random forest ensembles and extended multiextinction profiles for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 202-216, Jan. 2018.
-
(2018)
IEEE Trans. Geosci. Remote Sens
, vol.56
, Issue.1
, pp. 202-216
-
-
Xia, J.1
Ghamisi, P.2
Yokoya, N.3
Iwasaki, A.4
-
19
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions, " Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
-
(1999)
Mach. Learn
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
20
-
-
9444297357
-
Smoteboost: Improving prediction of the minority class in boosting
-
ser. Lecture Notes in Computer Science. Berlin Heidelberg, Germany Springer, 2003
-
N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, "Smoteboost: Improving prediction of the minority class in boosting, " in Knowledge Discovery in Databases: PKDD 2003, ser. Lecture Notes in Computer Science. Berlin Heidelberg, Germany: Springer, 2003, vol. 2838, pp. 107-119.
-
(2003)
Knowledge Discovery in Databases: PKDD
, vol.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
21
-
-
72949118881
-
Rusboost: A hybrid approach to alleviating class imbalance
-
Jan
-
C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, "Rusboost: A hybrid approach to alleviating class imbalance, " IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol. 40, no. 1, pp. 185-197, Jan. 2010.
-
(2010)
IEEE Trans. Syst. Man Cybern. A, Syst. Humans
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
Napolitano, A.4
-
22
-
-
84881072864
-
Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, "Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling, " Pattern Recognit., vol. 46, no. 12, pp. 3460-3471, 2013.
-
(2013)
Pattern Recognit
, vol.46
, Issue.12
, pp. 3460-3471
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Herrera, F.4
-
23
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M. S. Kamel, A. K.Wong, and Y.Wang, "Cost-sensitive boosting for classification of imbalanced data, " Pattern Recognit., vol. 40, no. 12, pp. 3358-3378, 2007.
-
(2007)
Pattern Recognit
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Kwong, A.3
Wang, Y.4
-
24
-
-
84937523920
-
-
Random balance: Ensembles of variable priors classifiers for imbalanced data
-
J. Díez-Pastor, J. Rodríguez, C. García-Osorio, and L. I. Kuncheva, "Random balance: Ensembles of variable priors classifiers for imbalanced data, " Knowl.-Based Syst., vol. 85, pp. 96-111, 2015.
-
(2015)
Knowl.-Based Syst
, vol.85
, pp. 96-111
-
-
Díez-Pastor, J.1
Rodríguez, J.2
García-Osorio, C.3
Kuncheva, L.I.4
-
25
-
-
85042332829
-
Imbalanced enterprise credit evaluation with dte-sbd: Decision tree ensemble based on smote and bagging with differentiated sampling rates
-
J. Sun, J. Lang, H. Fujita, and H. Li, "Imbalanced enterprise credit evaluation with dte-sbd: Decision tree ensemble based on smote and bagging with differentiated sampling rates, " Inf. Sci., vol. 425, pp. 76-91, 2018.
-
(2018)
Inf. Sci
, vol.425
, pp. 76-91
-
-
Sun, J.1
Lang, J.2
Fujita, H.3
Li, H.4
-
26
-
-
0348222721
-
New applications of ensembles of classifiers
-
R. Barandela, J. S. Sánchez, and R. M. Valdovinos, "New applications of ensembles of classifiers, " Pattern Anal. Appl., vol. 6, no. 3, pp. 245-256, 2003.
-
(2003)
Pattern Anal. Appl
, vol.6
, Issue.3
, pp. 245-256
-
-
Barandela, R.1
Sánchez, J.S.2
Valdovinos, R.M.3
-
27
-
-
20444392475
-
Using random forest to learn imbalanced data
-
C. Chen, A. Liaw, and L. Breiman, "Using random forest to learn imbalanced data, " Dept. Statist., Univ. California, Berkeley, Tech. Rep. 666, 2004.
-
(2004)
Dept. Statist., Univ. California, Berkeley, Tech. Rep
, vol.666
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
28
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Oct
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method, " IEEE Trans. Pattern Anal.Mach. Intell., vol. 28, no. 10, pp. 1619-1630, Oct. 2006.
-
(2006)
IEEE Trans. Pattern Anal.Mach. Intell
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
29
-
-
84927582865
-
-
Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features
-
P. Du, A. Samat, B.Waske, S. Liu, and Z. Li, "Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features, " ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 38-53, 2015.
-
(2015)
ISPRS J. Photogramm. Remote Sens
, vol.105
, pp. 38-53
-
-
Du, P.1
Samat, A.2
Waske, B.3
Liu, S.4
Li, Z.5
-
30
-
-
85027945747
-
Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional
-
random fields Jun
-
F. Li, L. Xu, P. Siva, A. Wong, and D. A. Clausi, "Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2427-2438, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.8
, Issue.6
, pp. 2427-2438
-
-
Li, F.1
Xu, L.2
Siva, P.3
Wong, A.4
Clausi, D.A.5
-
31
-
-
84960155938
-
Classseparation-based rotation forest for hyperspectral image classification
-
Apr
-
J. Xia, N. Falco, J. A. Benediktsson, J. Chanussot, and P. Du, "Classseparation-based rotation forest for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 4, pp. 584-588, Apr. 2016.
-
(2016)
IEEE Geosci. Remote Sens. Lett
, vol.13
, Issue.4
, pp. 584-588
-
-
Xia, J.1
Falco, N.2
Benediktsson, J.A.3
Chanussot, J.4
Du, P.5
-
32
-
-
85006321333
-
A cost-sensitive rotation forest algorithm for gene expression data classification
-
H. Lu, L.Yang, K. Yan, Y. Xue, and Z. Gao, "A cost-sensitive rotation forest algorithm for gene expression data classification, " Neurocomputing, vol. 228, pp. 270-276, 2017.
-
(2017)
Neurocomputing
, vol.228
, pp. 270-276
-
-
Lu, H.1
Yang, L.2
Yan, K.3
Xue, Y.4
Gao, Z.5
-
33
-
-
84922643075
-
Neighbourhood sampling in bagging for imbalanced data
-
no. Part B
-
J. Blaszczýnski and J. Stefanowski, "Neighbourhood sampling in bagging for imbalanced data, " Neurocomputing, vol. 150, no. Part B, pp. 529-542, 2015.
-
(2015)
Neurocomputing
, vol.150
, pp. 529-542
-
-
Blaszczýnski, J.1
Stefanowski, J.2
-
34
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "Smote: Synthetic minority over-sampling technique, " J. Artif. Int. Res., vol. 16, no. 1, pp. 321-357, 2002.
-
(2002)
J. Artif. Int. Res
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
35
-
-
27144531570
-
A study of the behavior of severalmethods for balancingmachine learning training data
-
G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of severalmethods for balancingmachine learning training data, " SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20-29, 2004.
-
(2004)
SIGKDD Explor. Newslett
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
36
-
-
85047066347
-
Investigation of training data issues in ensemble classification based on margin concept. Application to land cover mapping
-
Ph.D. dissertation
-
W. Feng, "Investigation of training data issues in ensemble classification based on margin concept. application to land cover mapping, " Ph.D. dissertation, Univ. Bordeaux 3, France, 2017.
-
(2017)
Univ. Bordeaux 3, France
-
-
Feng, W.1
-
37
-
-
0035478854
-
-
Random forests Oct
-
L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
39
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
R.Kohavi andD.Wolpert, "Bias plus variance decomposition for zero-one loss functions, " in Proc. 13th Int. Conf. Mach. Learn., Bari, Italy, 1996, pp. 275-283.
-
(1996)
Proc. 13th Int. Conf. Mach. Learn., Bari, Italy
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.2
-
40
-
-
50149090008
-
An empirical study on diversity measures and margin theory for ensembles of classifiers
-
Jul
-
M. Kapp, R. Sabourin, and P. Maupin, "An empirical study on diversity measures and margin theory for ensembles of classifiers, " in Proc. 10th Int. Conf. Inf. Fusion, Quebec, Canada, Jul. 2007, pp. 1-8.
-
(2007)
Proc. 10th Int. Conf. Inf. Fusion, Quebec, Canada
, pp. 1-8
-
-
Kapp, M.1
Sabourin, R.2
Maupin, P.3
|