메뉴 건너뛰기




Volumn 12, Issue 7, 2019, Pages 2159-2169

Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data

Author keywords

Ensemble learning; hyperspectral image classification; imbalance learning; rotation forest (RoF)

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; HYPERSPECTRAL IMAGING; ITERATIVE METHODS; REMOTE SENSING; SPECTROSCOPY;

EID: 85070566454     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2019.2922297     Document Type: Article
Times cited : (59)

References (40)
  • 2
    • 85047080680 scopus 로고    scopus 로고
    • Class imbalance ensemble learning based on the margin theory
    • W. Feng, W. Huang, and J. Ren, "Class imbalance ensemble learning based on the margin theory, " Appl. Sci., vol. 8, no. 5, 2018.
    • (2018) Appl. Sci , vol.8 , Issue.5
    • Feng, W.1    Huang, W.2    Ren, J.3
  • 3
    • 85043364952 scopus 로고    scopus 로고
    • Dynamic ensemble selection for multi-class imbalanced datasets
    • S. García, Z. Zhang, A. Altalhi, S. Alshomrani, and F. Herrera, "Dynamic ensemble selection for multi-class imbalanced datasets, " Inf. Sci., vol. 445-446, pp. 22-37, 2018.
    • (2018) Inf. Sci , vol.445-446 , pp. 22-37
    • García, S.1    Zhang, Z.2    Altalhi, A.3    Alshomrani, S.4    Herrera, F.5
  • 4
    • 84907442805 scopus 로고    scopus 로고
    • Imbalanced hyperspectral image classification based on maximum margin
    • Mar
    • T. Sun, L. Jiao, J. Feng, F. Liu, and X. Zhang, "Imbalanced hyperspectral image classification based on maximum margin, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3, pp. 522-526, Mar. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.3 , pp. 522-526
    • Sun, T.1    Jiao, L.2    Feng, J.3    Liu, F.4    Zhang, X.5
  • 5
    • 67650505046 scopus 로고    scopus 로고
    • Diversity analysis on imbalanced data sets by using ensemble models
    • TN, USA Mar
    • S.Wang and X. Yao, "Diversity analysis on imbalanced data sets by using ensemble models, " in Proc. IEEE Symp. Comput. Intell. Data Mining., Nashville, TN, USA, Mar. 2009, pp. 324-331.
    • (2009) Proc IEEE Symp. Comput. Intell. Data Mining., Nashville , pp. 324-331
    • Wang, S.1    Yao, X.2
  • 6
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: Open challenges and future directions
    • B. Krawczyk, "Learning from imbalanced data: Open challenges and future directions, " Progress Artif. Intell., vol. 5, no. 4, pp. 221-232, 2016.
    • (2016) Progress Artif. Intell , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1
  • 7
    • 84979464666 scopus 로고    scopus 로고
    • Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
    • J.A. Sáez, "Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets, " Pattern Recognit., vol. 57, pp. 164-178, 2016.
    • (2016) Pattern Recognit , vol.57 , pp. 164-178
    • Sáez, J.A.1
  • 8
    • 85048303100 scopus 로고    scopus 로고
    • An empirical comparison on state-of-The-Art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme
    • J. Bi and C. Zhang, "An empirical comparison on state-of-The-Art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme, " Knowl.-Based Syst., vol. 158, pp. 81-93, 2018.
    • (2018) Knowl.-Based Syst , vol.158 , pp. 81-93
    • Bi, J.1    Zhang, C.2
  • 9
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep
    • H. B. He and E. A. Garcia, "Learning from imbalanced data, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.B.1    Garcia, E.A.2
  • 10
    • 85028702271 scopus 로고    scopus 로고
    • Kernel based online learning for imbalance multiclass classification
    • D. Shuya et al., "Kernel based online learning for imbalance multiclass classification, " Neurocomputing, vol. 277, pp. 139-148, 2018.
    • (2018) Neurocomputing , vol.277 , pp. 139-148
    • Shuya, D.1
  • 12
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: Bagging-, boosting, and hybrid-based approaches
    • Jul
    • M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, "A review on ensembles for the class imbalance problem: Bagging-, boosting, and hybrid-based approaches, " IEEE Trans. Syst. Man, Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 463-484, Jul. 2012.
    • (2012) IEEE Trans. Syst. Man, Cybern. C, Appl. Rev , vol.42 , Issue.4 , pp. 463-484
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 13
    • 85036623598 scopus 로고    scopus 로고
    • Weight-based rotation forest for hyperspectral image classification
    • Nov
    • W. Feng andW.Bao, "Weight-based rotation forest for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2167-2171, Nov. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , Issue.11 , pp. 2167-2171
    • Feng, W.1    Bao, W.2
  • 14
    • 85042400496 scopus 로고    scopus 로고
    • A study on combining dynamic selection and data preprocessing for imbalance learning
    • A. Roy, R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, "A study on combining dynamic selection and data preprocessing for imbalance learning, " Neurocomputing, vol. 286, pp. 179-192, 2018.
    • (2018) Neurocomputing , vol.286 , pp. 179-192
    • Roy, A.1    Cruz, R.M.2    Sabourin, R.3    Cavalcanti, G.D.4
  • 15
    • 85049450664 scopus 로고    scopus 로고
    • Improving imbalanced learning through a heuristic oversampling method based on k-means and smote
    • G. Douzas, F. Bacao, and F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and smote, " Inf. Sci., vol. 465, pp. 1-20, 2018.
    • (2018) Inf. Sci , vol.465 , pp. 1-20
    • Douzas, G.1    Bacao, F.2    Last, F.3
  • 16
    • 84956598937 scopus 로고    scopus 로고
    • Class noise removal and correction for image classification using ensemble margin
    • Sep
    • W. Feng and S. Boukir, "Class noise removal and correction for image classification using ensemble margin, " in Proc. IEEE Int. Conf. Image Process., Quebec City, QC, Canada, Sep. 2015, pp. 4698-4702.
    • (2015) Proc IEEE Int. Conf. Image Process., Quebec City, QC, Canada , pp. 4698-4702
    • Feng, W.1    Boukir, S.2
  • 18
    • 85030640770 scopus 로고    scopus 로고
    • Random forest ensembles and extended multiextinction profiles for hyperspectral image classification
    • Jan
    • J. Xia, P. Ghamisi, N. Yokoya, and A. Iwasaki, "Random forest ensembles and extended multiextinction profiles for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 202-216, Jan. 2018.
    • (2018) IEEE Trans. Geosci. Remote Sens , vol.56 , Issue.1 , pp. 202-216
    • Xia, J.1    Ghamisi, P.2    Yokoya, N.3    Iwasaki, A.4
  • 19
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions, " Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
    • (1999) Mach. Learn , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 20
    • 9444297357 scopus 로고    scopus 로고
    • Smoteboost: Improving prediction of the minority class in boosting
    • ser. Lecture Notes in Computer Science. Berlin Heidelberg, Germany Springer, 2003
    • N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, "Smoteboost: Improving prediction of the minority class in boosting, " in Knowledge Discovery in Databases: PKDD 2003, ser. Lecture Notes in Computer Science. Berlin Heidelberg, Germany: Springer, 2003, vol. 2838, pp. 107-119.
    • (2003) Knowledge Discovery in Databases: PKDD , vol.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 22
    • 84881072864 scopus 로고    scopus 로고
    • Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, "Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling, " Pattern Recognit., vol. 46, no. 12, pp. 3460-3471, 2013.
    • (2013) Pattern Recognit , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 23
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M. S. Kamel, A. K.Wong, and Y.Wang, "Cost-sensitive boosting for classification of imbalanced data, " Pattern Recognit., vol. 40, no. 12, pp. 3358-3378, 2007.
    • (2007) Pattern Recognit , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Kwong, A.3    Wang, Y.4
  • 24
    • 84937523920 scopus 로고    scopus 로고
    • Random balance: Ensembles of variable priors classifiers for imbalanced data
    • J. Díez-Pastor, J. Rodríguez, C. García-Osorio, and L. I. Kuncheva, "Random balance: Ensembles of variable priors classifiers for imbalanced data, " Knowl.-Based Syst., vol. 85, pp. 96-111, 2015.
    • (2015) Knowl.-Based Syst , vol.85 , pp. 96-111
    • Díez-Pastor, J.1    Rodríguez, J.2    García-Osorio, C.3    Kuncheva, L.I.4
  • 25
    • 85042332829 scopus 로고    scopus 로고
    • Imbalanced enterprise credit evaluation with dte-sbd: Decision tree ensemble based on smote and bagging with differentiated sampling rates
    • J. Sun, J. Lang, H. Fujita, and H. Li, "Imbalanced enterprise credit evaluation with dte-sbd: Decision tree ensemble based on smote and bagging with differentiated sampling rates, " Inf. Sci., vol. 425, pp. 76-91, 2018.
    • (2018) Inf. Sci , vol.425 , pp. 76-91
    • Sun, J.1    Lang, J.2    Fujita, H.3    Li, H.4
  • 26
    • 0348222721 scopus 로고    scopus 로고
    • New applications of ensembles of classifiers
    • R. Barandela, J. S. Sánchez, and R. M. Valdovinos, "New applications of ensembles of classifiers, " Pattern Anal. Appl., vol. 6, no. 3, pp. 245-256, 2003.
    • (2003) Pattern Anal. Appl , vol.6 , Issue.3 , pp. 245-256
    • Barandela, R.1    Sánchez, J.S.2    Valdovinos, R.M.3
  • 29
    • 84927582865 scopus 로고    scopus 로고
    • Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features
    • P. Du, A. Samat, B.Waske, S. Liu, and Z. Li, "Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features, " ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 38-53, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.105 , pp. 38-53
    • Du, P.1    Samat, A.2    Waske, B.3    Liu, S.4    Li, Z.5
  • 30
    • 85027945747 scopus 로고    scopus 로고
    • Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional
    • random fields Jun
    • F. Li, L. Xu, P. Siva, A. Wong, and D. A. Clausi, "Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2427-2438, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.8 , Issue.6 , pp. 2427-2438
    • Li, F.1    Xu, L.2    Siva, P.3    Wong, A.4    Clausi, D.A.5
  • 31
    • 84960155938 scopus 로고    scopus 로고
    • Classseparation-based rotation forest for hyperspectral image classification
    • Apr
    • J. Xia, N. Falco, J. A. Benediktsson, J. Chanussot, and P. Du, "Classseparation-based rotation forest for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 4, pp. 584-588, Apr. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.4 , pp. 584-588
    • Xia, J.1    Falco, N.2    Benediktsson, J.A.3    Chanussot, J.4    Du, P.5
  • 32
    • 85006321333 scopus 로고    scopus 로고
    • A cost-sensitive rotation forest algorithm for gene expression data classification
    • H. Lu, L.Yang, K. Yan, Y. Xue, and Z. Gao, "A cost-sensitive rotation forest algorithm for gene expression data classification, " Neurocomputing, vol. 228, pp. 270-276, 2017.
    • (2017) Neurocomputing , vol.228 , pp. 270-276
    • Lu, H.1    Yang, L.2    Yan, K.3    Xue, Y.4    Gao, Z.5
  • 33
    • 84922643075 scopus 로고    scopus 로고
    • Neighbourhood sampling in bagging for imbalanced data
    • no. Part B
    • J. Blaszczýnski and J. Stefanowski, "Neighbourhood sampling in bagging for imbalanced data, " Neurocomputing, vol. 150, no. Part B, pp. 529-542, 2015.
    • (2015) Neurocomputing , vol.150 , pp. 529-542
    • Blaszczýnski, J.1    Stefanowski, J.2
  • 34
    • 0346586663 scopus 로고    scopus 로고
    • Smote: Synthetic minority over-sampling technique
    • N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "Smote: Synthetic minority over-sampling technique, " J. Artif. Int. Res., vol. 16, no. 1, pp. 321-357, 2002.
    • (2002) J. Artif. Int. Res , vol.16 , Issue.1 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3    Kegelmeyer, W.P.4
  • 35
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of severalmethods for balancingmachine learning training data
    • G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of severalmethods for balancingmachine learning training data, " SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20-29, 2004.
    • (2004) SIGKDD Explor. Newslett , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 36
    • 85047066347 scopus 로고    scopus 로고
    • Investigation of training data issues in ensemble classification based on margin concept. Application to land cover mapping
    • Ph.D. dissertation
    • W. Feng, "Investigation of training data issues in ensemble classification based on margin concept. application to land cover mapping, " Ph.D. dissertation, Univ. Bordeaux 3, France, 2017.
    • (2017) Univ. Bordeaux 3, France
    • Feng, W.1
  • 37
    • 0035478854 scopus 로고    scopus 로고
    • Random forests Oct
    • L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 50149090008 scopus 로고    scopus 로고
    • An empirical study on diversity measures and margin theory for ensembles of classifiers
    • Jul
    • M. Kapp, R. Sabourin, and P. Maupin, "An empirical study on diversity measures and margin theory for ensembles of classifiers, " in Proc. 10th Int. Conf. Inf. Fusion, Quebec, Canada, Jul. 2007, pp. 1-8.
    • (2007) Proc. 10th Int. Conf. Inf. Fusion, Quebec, Canada , pp. 1-8
    • Kapp, M.1    Sabourin, R.2    Maupin, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.