-
1
-
-
0000049356
-
p approach to the Dirichlet problem. I. Regularity theorems
-
p approach to the Dirichlet problem. I. Regularity theorems. Ann. Scuola Norm. Sup. Pisa (3) 13, 405–448 (1959)
-
(1959)
Ann. Scuola Norm. Sup. Pisa
, vol.13
, Issue.3
, pp. 405-448
-
-
Agmon, S.1
-
2
-
-
84887513526
-
The derivation of ergodic mean field game equations for several populations of players
-
M. Bardi, E. Feleqi, The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3(4), 523–536 (2013)
-
(2013)
Dyn. Games Appl.
, vol.3
, Issue.4
, pp. 523-536
-
-
Bardi, M.1
Feleqi, E.2
-
4
-
-
0035541168
-
Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations
-
G. Barles, P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal. 32(6), 1311–1323 (2001)
-
(2001)
SIAM J. Math. Anal.
, vol.32
, Issue.6
, pp. 1311-1323
-
-
Barles, G.1
Souganidis, P.E.2
-
5
-
-
85030238377
-
Bellomo, Degond, Tadmor
-
Variational Mean Field Games, ed., Springer, Berlin
-
J.-D. Benamou, G. Carlier, F. Santambrogio, Variational Mean Field Games, ed. by Bellomo, Degond, Tadmor. Active Particles, vol. 1 (Springer, Berlin, 2017)
-
(2017)
Active Particles
, vol.1
-
-
Benamou, J.-D.1
Carlier, G.2
Santambrogio, F.3
-
12
-
-
84942369075
-
Second order mean field games with degenerate diffusion and local coupling
-
P. Cardaliaguet, P.J. Graber, A. Porretta, D. Tonon, Second order mean field games with degenerate diffusion and local coupling. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1287– 1317 (2015)
-
(2015)
Nodea Nonlinear Differ. Equ. Appl.
, vol.22
, Issue.5
, pp. 1287-1317
-
-
Cardaliaguet, P.1
Graber, P.J.2
Porretta, A.3
Tonon, D.4
-
13
-
-
84992539178
-
First order mean field games with density constraints: Pressure equals price
-
P. Cardaliaguet, A.R. Mészáros, F. Santambrogio, First order mean field games with density constraints: pressure equals price. SIAM J. Control. Optim. 54(5), 2672–2709 (2016)
-
(2016)
SIAM J. Control. Optim.
, vol.54
, Issue.5
, pp. 2672-2709
-
-
Cardaliaguet, P.1
Mészáros, A.R.2
Santambrogio, F.3
-
14
-
-
85052390709
-
A segregation problem in multi-population mean field games
-
Birkhäuser, Basel
-
P. Cardaliaguet, A. Porretta, D. Tonon, A segregation problem in multi-population mean field games, in Advances in Dynamic and Mean Field Games. ISDG 2016. Annals of the International Society of Dynamic Games ed. by J. Apaloo, B. Viscolani, vol. 15 (Birkhäuser, Basel, 2017), pp. 49–70
-
(2017)
Advances in Dynamic and Mean Field Games. ISDG 2016. Annals of the International Society of Dynamic Games Ed. by J. Apaloo, B. Viscolani
, vol.15
, pp. 49-70
-
-
Cardaliaguet, P.1
Porretta, A.2
Tonon, D.3
-
16
-
-
85057980819
-
Concentration of ground states in stationary mean-field games systems
-
A. Cesaroni, M. Cirant, Concentration of ground states in stationary mean-field games systems. Anal. PDE 12(3), 737–787 (2019)
-
(2019)
Anal. PDE
, vol.12
, Issue.3
, pp. 737-787
-
-
Cesaroni, A.1
Cirant, M.2
-
17
-
-
85040517831
-
On stationary fractional mean field games
-
A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga, E. Valdinoci, On stationary fractional mean field games. J. Math. Pures Appl. 122, 1–22 (2019)
-
(2019)
J. Math. Pures Appl.
, vol.122
, pp. 1-22
-
-
Cesaroni, A.1
Cirant, M.2
Dipierro, S.3
Novaga, M.4
Valdinoci, E.5
-
19
-
-
84926524427
-
Multi-population mean field games systems with Neumann boundary conditions
-
M. Cirant, Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103(5), 1294–1315 (2015)
-
(2015)
J. Math. Pures Appl. (9)
, vol.103
, Issue.5
, pp. 1294-1315
-
-
Cirant, M.1
-
20
-
-
84938751802
-
A generalization of the Hopf-Cole transformation for stationary mean field games systems
-
M. Cirant, A generalization of the Hopf-Cole transformation for stationary mean field games systems. C.R. Math. 353(9), 807–811 (2015)
-
(2015)
C.R. Math.
, vol.353
, Issue.9
, pp. 807-811
-
-
Cirant, M.1
-
21
-
-
84979000025
-
Stationary focusing mean-field games
-
M. Cirant, Stationary focusing mean-field games. Commun. Part. Diff. Eq. 41(8), 1324–1346 (2016)
-
(2016)
Commun. Part. Diff. Eq.
, vol.41
, Issue.8
, pp. 1324-1346
-
-
Cirant, M.1
-
22
-
-
85064014763
-
Time-dependent focusing mean-field games: The sub-critical case
-
M. Cirant, D. Tonon, Time-dependent focusing mean-field games: the sub-critical case. J. Dyn. Diff. Equat. 31(1), 49–79 (2019)
-
(2019)
J. Dyn. Diff. Equat.
, vol.31
, Issue.1
, pp. 49-79
-
-
Cirant, M.1
Tonon, D.2
-
23
-
-
85019614845
-
Bifurcation and segregation in quadratic two-populations mean field games systems
-
M. Cirant, G. Verzini, Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM Control Optim. Calc. Var. 23, 1145–1177 (2017)
-
(2017)
ESAIM Control Optim. Calc. Var.
, vol.23
, pp. 1145-1177
-
-
Cirant, M.1
Verzini, G.2
-
25
-
-
84887513526
-
The derivation of ergodic mean field game equations for several populations of players
-
E. Feleqi, The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3(4), 523–536 (2013)
-
(2013)
Dyn. Games Appl.
, vol.3
, Issue.4
, pp. 523-536
-
-
Feleqi, E.1
-
26
-
-
0003549965
-
Elliptic Partial Differential Equations of Second Order
-
Springer-Verlag, Berlin
-
D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. (Springer-Verlag, Berlin, 2001)
-
(2001)
Classics in Mathematics
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
27
-
-
84899464039
-
Mean field games models–a brief survey
-
D.A. Gomes, J. Saude, Mean field games models–a brief survey. Dyn. Games Appl. 4(2), 110– 154 (2014)
-
(2014)
Dyn. Games Appl.
, vol.4
, Issue.2
, pp. 110-154
-
-
Gomes, D.A.1
Saude, J.2
-
28
-
-
84892860445
-
On the existence of classical solutions for stationary extended mean field games
-
D.A. Gomes, S. Patrizi, V. Voskanyan, On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 99, 49–79 (2014)
-
(2014)
Nonlinear Anal
, vol.99
, pp. 49-79
-
-
Gomes, D.A.1
Patrizi, S.2
Voskanyan, V.3
-
29
-
-
85045415487
-
One-dimensional stationary mean-field games with local coupling
-
D.A. Gomes, L. Nurbekyan, M. Prazeres, One-dimensional stationary mean-field games with local coupling. Dyn. Games Appl. 8(2), 315–351 (2018)
-
(2018)
Dyn. Games Appl.
, vol.8
, Issue.2
, pp. 315-351
-
-
Gomes, D.A.1
Nurbekyan, L.2
Prazeres, M.3
-
31
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the nash certainty equivalence principle
-
M. Huang, R. Malhamé, P. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)
-
(2006)
Commun. Inf. Syst.
, vol.6
, Issue.3
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.2
Caines, P.3
-
33
-
-
0000104617
-
Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints
-
J.-M. Lasry, P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. Math. Ann. 283(4), 583–630 (1989)
-
(1989)
Math. Ann.
, vol.283
, Issue.4
, pp. 583-630
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
34
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrôle optimal
-
J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.10
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
35
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.9
, pp. 619-625
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
38
-
-
84948110228
-
A variational approach to second order mean field games with density constraints: The stationary case
-
A.R. Mészáros, F.J. Silva, A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. (9) 104(6), 1135–1159 (2015)
-
(2015)
J. Math. Pures Appl. (9)
, vol.104
, Issue.6
, pp. 1135-1159
-
-
Mészáros, A.R.1
Silva, F.J.2
-
39
-
-
85015147717
-
Regularity for second-order stationary mean-field games
-
E. Pimentel, V. Voskanyan, Regularity for second-order stationary mean-field games. Indiana Univ. Math. J. 66, 1–22 (2017)
-
(2017)
Indiana Univ. Math. J.
, vol.66
, pp. 1-22
-
-
Pimentel, E.1
Voskanyan, V.2
-
40
-
-
0000819314
-
Integral functionals, normal integrands and measurable selections
-
R.T. Rockafellar, Integral functionals, normal integrands and measurable selections. Lect. Notes Math. 543, 157–207 (1976)
-
(1976)
Lect. Notes Math.
, vol.543
, pp. 157-207
-
-
Rockafellar, R.T.1
|