메뉴 건너뛰기




Volumn 12, Issue 3, 2019, Pages 341-363

Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation

Author keywords

Deep learning; High spatial resolution remote sensing image; Land cover classification; OBIA; Scale parameter estimation

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; ARTIFICIAL NEURAL NETWORK; IMAGE CLASSIFICATION; IMAGE RESOLUTION; LAND COVER; PARAMETER ESTIMATION; PIXEL; REMOTE SENSING; SATELLITE IMAGERY; SEGMENTATION; SPATIAL RESOLUTION; URBAN AREA;

EID: 85068144209     PISSN: 18650473     EISSN: 18650481     Source Type: Journal    
DOI: 10.1007/s12145-019-00383-2     Document Type: Article
Times cited : (71)

References (113)
  • 4
    • 85020312124 scopus 로고    scopus 로고
    • Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
    • Alshehhi R, Marpu PR, Woon WL, Dalla Mura M (2017) Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J Photogramm Remote Sens 130:139–149
    • (2017) ISPRS J Photogramm Remote Sens , vol.130 , pp. 139-149
    • Alshehhi, R.1    Marpu, P.R.2    Woon, W.L.3    Dalla Mura, M.4
  • 6
    • 85017577194 scopus 로고    scopus 로고
    • Segment-before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images
    • Audebert N, Saux BL, Lefèvre S (2017) Segment-before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images. Remote Sens 9:368
    • (2017) Remote Sens , vol.9 , pp. 368
    • Audebert, N.1    Saux, B.L.2    Lefèvre, S.3
  • 9
    • 0035382401 scopus 로고    scopus 로고
    • What's wrong with pixels? Some recent developments interfacing remote sensing and GIS
    • Blaschke T (2001) What's wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS 6:12–17
    • (2001) GeoBIT/GIS , vol.6 , pp. 12-17
    • Blaschke, T.1
  • 10
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16
    • (2010) ISPRS J Photogramm Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 11
    • 84890209110 scopus 로고    scopus 로고
    • Geographic object-based image analysis–towards a new paradigm
    • Blaschke T et al (2014) Geographic object-based image analysis–towards a new paradigm. ISPRS J Photogramm Remote Sens 87:180–191
    • (2014) ISPRS J Photogramm Remote Sens , vol.87 , pp. 180-191
    • Blaschke, T.1
  • 12
    • 85067463024 scopus 로고    scopus 로고
    • Object-based image analysis: spatial concepts for knowledge-driven remote sensing applications
    • Blaschke T, Lang S, Hay G (2008) Object-based image analysis: spatial concepts for knowledge-driven remote sensing applications. IEEE Trans Geosci Remote Sens 65:2–16
    • (2008) IEEE Trans Geosci Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1    Lang, S.2    Hay, G.3
  • 13
    • 84938420549 scopus 로고    scopus 로고
    • A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery
    • Cánovas-García F, Alonso-Sarría F (2015a) A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery. Geocarto International 30:937–961
    • (2015) Geocarto International , vol.30 , pp. 937-961
    • Cánovas-García, F.1    Alonso-Sarría, F.2
  • 14
    • 84937837804 scopus 로고    scopus 로고
    • Optimal combination of classification algorithms and feature ranking methods for object-based classification of submeter resolution Z/I-Imaging DMC imagery
    • Cánovas-García F, Alonso-Sarría F (2015b) Optimal combination of classification algorithms and feature ranking methods for object-based classification of submeter resolution Z/I-Imaging DMC imagery. Remote Sens 7:4651–4677
    • (2015) Remote Sens , vol.7 , pp. 4651-4677
    • Cánovas-García, F.1    Alonso-Sarría, F.2
  • 15
    • 85020214070 scopus 로고    scopus 로고
    • Land use classification in remote sensing images by convolutional neural networks
    • Castelluccio M, Poggi G, Sansone C, Verdoliva L (2015) Land use classification in remote sensing images by convolutional neural networks. Acta Ecologica Sinica 28(2):627–635
    • (2015) Acta Ecologica Sinica , vol.28 , Issue.2 , pp. 627-635
    • Castelluccio, M.1    Poggi, G.2    Sansone, C.3    Verdoliva, L.4
  • 18
    • 85021112559 scopus 로고    scopus 로고
    • Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach
    • Chen Q, Li L, Xu Q, Yang S, Shi X, Liu X (2017) Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach. Remote Sens 9:570
    • (2017) Remote Sens , vol.9 , pp. 570
    • Chen, Q.1    Li, L.2    Xu, Q.3    Yang, S.4    Shi, X.5    Liu, X.6
  • 19
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Chen X, Xiang S, Liu C-L, Pan C-H (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11:1797–1801
    • (2014) IEEE Geosci Remote Sens Lett , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 20
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54:6232–6251
    • (2016) IEEE Trans Geosci Remote Sens , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 21
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: benchmark and state of the art
    • (,),. In
    • Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art. In: Proceedings of the IEEE 105(10):1865–1883
    • (2017) Proceedings of the IEEE , vol.105 , Issue.10 , pp. 1865-1883
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 23
    • 49449103785 scopus 로고    scopus 로고
    • Classification of the wildland–urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial photography Computers
    • Cleve C, Kelly M, Kearns FR, Moritz M (2008) Classification of the wildland–urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial photography Computers. Environment and Urban Systems 32:317–326
    • (2008) Environment and Urban Systems , vol.32 , pp. 317-326
    • Cleve, C.1    Kelly, M.2    Kearns, F.R.3    Moritz, M.4
  • 24
    • 85017657736 scopus 로고    scopus 로고
    • Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels
    • Csillik O (2017) Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens 9:243
    • (2017) Remote Sens , vol.9 , pp. 243
    • Csillik, O.1
  • 25
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 20:30–42
    • (2012) IEEE Trans Audio Speech Lang Process , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 28
    • 85020191797 scopus 로고    scopus 로고
    • Classification of quickbird imagery over urban area using convolutional neural network
    • IEEE
    • Djerriri K, Karoui MS (2017) Classification of quickbird imagery over urban area using convolutional neural network. In: Urban Remote Sensing Event (JURSE), 2017 Joint. IEEE, pp 1–4
    • (2017) Urban Remote Sensing Event (JURSE), 2017 Joint , pp. 1-4
    • Djerriri, K.1    Karoui, M.S.2
  • 29
    • 77951189897 scopus 로고    scopus 로고
    • ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
    • Drǎguţ L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci 24:859–871
    • (2010) Int J Geogr Inf Sci , vol.24 , pp. 859-871
    • Drǎguţ, L.1    Tiede, D.2    Levick, S.R.3
  • 31
    • 80052740627 scopus 로고    scopus 로고
    • A spatial–spectral kernel-based approach for the classification of remote-sensing images
    • Fauvel M, Chanussot J, Benediktsson JA (2012) A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recogn 45:381–392
    • (2012) Pattern Recogn , vol.45 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 33
    • 85019898857 scopus 로고    scopus 로고
    • Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network
    • Fu G, Liu C, Zhou R, Sun T, Zhang Q (2017) Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens 9:498
    • (2017) Remote Sens , vol.9 , pp. 498
    • Fu, G.1    Liu, C.2    Zhou, R.3    Sun, T.4    Zhang, Q.5
  • 34
    • 27744522225 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition
    • Fukushima K, Miyake S (1982) Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets. Springer, pp 267–285
    • (1982) Competition and Cooperation in Neural Nets. Springer , pp. 267-285
    • Fukushima, K.1    Miyake, S.2
  • 39
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 40
    • 28544434203 scopus 로고    scopus 로고
    • An automated object-based approach for the multiscale image segmentation of forest scenes
    • Hay GJ, Castilla G, Wulder MA, Ruiz JR (2005) An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Obs Geoinf 7:339–359
    • (2005) Int J Appl Earth Obs Geoinf , vol.7 , pp. 339-359
    • Hay, G.J.1    Castilla, G.2    Wulder, M.A.3    Ruiz, J.R.4
  • 41
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G et al (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag 29:82–97
    • (2012) IEEE Signal Process Mag , vol.29 , pp. 82-97
    • Hinton, G.1
  • 42
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu F, Xia G-S, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7:14680–14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 43
    • 84876726723 scopus 로고    scopus 로고
    • Change detection from remotely sensed images: From pixel-based to object-based approaches
    • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106
    • (2013) ISPRS J Photogramm Remote Sens , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 44
    • 77950595123 scopus 로고    scopus 로고
    • Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information
    • Karl JW, Maurer BA (2010) Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information. Ecological Informatics 5:194–202
    • (2010) Ecological Informatics , vol.5 , pp. 194-202
    • Karl, J.W.1    Maurer, B.A.2
  • 46
    • 85029769564 scopus 로고    scopus 로고
    • Classification of semiurban landscapes from very high-resolution satellite images using a regionalized multiscale segmentation approach
    • Kavzoglu T, Erdemir MY, Tonbul H (2017) Classification of semiurban landscapes from very high-resolution satellite images using a regionalized multiscale segmentation approach. J Appl Remote Sens 11:035016
    • (2017) J Appl Remote Sens , vol.11 , pp. 035016
    • Kavzoglu, T.1    Erdemir, M.Y.2    Tonbul, H.3
  • 48
    • 85047379699 scopus 로고    scopus 로고
    • Selecting optimal slic superpixels parameters by using discrepancy measures
    • Kavzoglu T, Tonbul H (2017b) Selecting optimal slic superpixels parameters by using discrepancy measures. In: Asian Conference On Remote Sensing
    • (2017) Asian Conference on Remote Sensing
    • Kavzoglu, T.1    Tonbul, H.2
  • 49
    • 85052086237 scopus 로고    scopus 로고
    • An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery
    • Kavzoglu T, Tonbul H (2018) An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery. Int J Remote Sens:1–17
    • (2018) Int J Remote Sens , pp. 1-17
    • Kavzoglu, T.1    Tonbul, H.2
  • 52
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • Längkvist M, Kiselev A, Alirezaie M, Loutfi A (2016) Classification and segmentation of satellite orthoimagery using convolutional neural networks. Remote Sens 8:329
    • (2016) Remote Sens , vol.8 , pp. 329
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 55
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • (,),. In
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of IEEE 86(11):2278–2324
    • (1998) Proceedings of IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 58
    • 85019911687 scopus 로고    scopus 로고
    • Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images
    • Li F, Li S, Zhu C, Lan X, Chang H (2017a) Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images. Remote Sens 9:494
    • (2017) Remote Sens , vol.9 , pp. 494
    • Li, F.1    Li, S.2    Zhu, C.3    Lan, X.4    Chang, H.5
  • 59
    • 85010660533 scopus 로고    scopus 로고
    • Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
    • Li W, Fu H, Yu L, Cracknell A (2016) Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens 9:22
    • (2016) Remote Sens , vol.9 , pp. 22
    • Li, W.1    Fu, H.2    Yu, L.3    Cracknell, A.4
  • 60
    • 84912102806 scopus 로고    scopus 로고
    • Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA
    • Li X, Shao G (2014) Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA. Remote Sens 6:11372–11390
    • (2014) Remote Sens , vol.6 , pp. 11372-11390
    • Li, X.1    Shao, G.2
  • 61
    • 85010690651 scopus 로고    scopus 로고
    • Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network
    • (, b
    • Li Y, Zhang H, Shen Q (2017b) Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens 9:–67
    • (2017) Remote Sens , vol.9 , pp. 67
    • Li, Y.1    Zhang, H.2    Shen, Q.3
  • 62
    • 85019922802 scopus 로고    scopus 로고
    • Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network
    • Lin H, Shi Z, Zou Z (2017) Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network. Remote Sens 9:480
    • (2017) Remote Sens , vol.9 , pp. 480
    • Lin, H.1    Shi, Z.2    Zou, Z.3
  • 66
    • 85010214408 scopus 로고    scopus 로고
    • Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks
    • Long Y, Gong Y, Xiao Z, Liu Q (2017) Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Trans Geosci Remote Sens 55:2486–2498
    • (2017) IEEE Trans Geosci Remote Sens , vol.55 , pp. 2486-2498
    • Long, Y.1    Gong, Y.2    Xiao, Z.3    Liu, Q.4
  • 67
    • 37549014903 scopus 로고    scopus 로고
    • Object-oriented classification of sidescan sonar data for mapping benthic marine habitats
    • Lucieer V (2008) Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. Int J Remote Sens 29:905–921
    • (2008) Int J Remote Sens , vol.29 , pp. 905-921
    • Lucieer, V.1
  • 70
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional neural networks for large-scale remote-sensing image classification
    • Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2017) Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 55:645–657
    • (2017) IEEE Trans Geosci Remote Sens , vol.55 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 72
    • 85032867785 scopus 로고    scopus 로고
    • Rapid broad area search and detection of Chinese surface-to-air missile sites using deep convolutional neural networks
    • Marcum RA, Davis CH, Scott GJ, Nivin TW (2017) Rapid broad area search and detection of Chinese surface-to-air missile sites using deep convolutional neural networks. J Appl Remote Sens 11:042614
    • (2017) J Appl Remote Sens , vol.11 , pp. 042614
    • Marcum, R.A.1    Davis, C.H.2    Scott, G.J.3    Nivin, T.W.4
  • 73
    • 85007109379 scopus 로고    scopus 로고
    • Improved Aircraft Recognition for Aerial Refueling Through Data Augmentation in Convolutional Neural Networks
    • Mash R, Borghetti B, Pecarina J (2016) Improved Aircraft Recognition for Aerial Refueling Through Data Augmentation in Convolutional Neural Networks. In: International Symposium on Visual Computing. Springer, pp 113–122
    • (2016) International Symposium on Visual Computing. Springer , pp. 113-122
    • Mash, R.1    Borghetti, B.2    Pecarina, J.3
  • 74
    • 84862816098 scopus 로고    scopus 로고
    • Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm
    • Ming D, Ci T, Cai H, Li L, Qiao C, Du J (2012) Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm. IEEE Geosci Remote Sens Lett 9:813–817
    • (2012) IEEE Geosci Remote Sens Lett , vol.9 , pp. 813-817
    • Ming, D.1    Ci, T.2    Cai, H.3    Li, L.4    Qiao, C.5    Du, J.6
  • 75
    • 84929448899 scopus 로고    scopus 로고
    • Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example
    • Ming D, Li J, Wang J, Zhang M (2015) Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example. ISPRS J Photogramm Remote Sens 106:28–41
    • (2015) ISPRS J Photogramm Remote Sens , vol.106 , pp. 28-41
    • Ming, D.1    Li, J.2    Wang, J.3    Zhang, M.4
  • 77
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images
    • Moser G, Serpico SB, Benediktsson JA (2013) Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images. Proc IEEE 101:631–651
    • (2013) Proc IEEE , vol.101 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 78
    • 79952070569 scopus 로고    scopus 로고
    • Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
    • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115:1145–1161
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1145-1161
    • Myint, S.W.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5
  • 80
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Nogueira K, Penatti OA, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61:539–556
    • (2017) Pattern Recogn , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.2    dos Santos, J.A.3
  • 81
    • 85062362438 scopus 로고    scopus 로고
    • An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification
    • Pan X, Zhao J, Xu J (2019) An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification. Int J Remote Sens:1–25
    • (2019) Int J Remote Sens , pp. 1-25
    • Pan, X.1    Zhao, J.2    Xu, J.3
  • 82
    • 0037143141 scopus 로고    scopus 로고
    • A method for the segmentation of very high spatial resolution images of forested landscapes
    • Pekkarinen A (2002) A method for the segmentation of very high spatial resolution images of forested landscapes. Int J Remote Sens 23:2817–2836
    • (2002) Int J Remote Sens , vol.23 , pp. 2817-2836
    • Pekkarinen, A.1
  • 84
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • Plaza A, Martínez P, Pérez R, Plaza J (2002) Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans Geosci Remote Sens 40:2025–2041
    • (2002) IEEE Trans Geosci Remote Sens , vol.40 , pp. 2025-2041
    • Plaza, A.1    Martínez, P.2    Pérez, R.3    Plaza, J.4
  • 86
    • 84962512661 scopus 로고    scopus 로고
    • Detection of seals in remote sensing images using features extracted from deep convolutional neural networks
    • Salberg A-B (2015) Detection of seals in remote sensing images using features extracted from deep convolutional neural networks. In: IGARSS. pp 1893–1896
    • (2015) IGARSS , pp. 1893-1896
    • Salberg, A.-B.1
  • 87
    • 85013301566 scopus 로고    scopus 로고
    • Training Deep Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery
    • Scott GJ, England MR, Starms WA, Marcum RA, Davis CH (2017) Training Deep Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery. IEEE Geosci Remote Sens Lett 14:549–553
    • (2017) IEEE Geosci Remote Sens Lett , vol.14 , pp. 549-553
    • Scott, G.J.1    England, M.R.2    Starms, W.A.3    Marcum, R.A.4    Davis, C.H.5
  • 88
    • 34648827347 scopus 로고    scopus 로고
    • The use of geostatistical methods to identify severe earthquake damage in an urban area
    • Sertel E, Kaya S, Curran P (2007) The use of geostatistical methods to identify severe earthquake damage in an urban area. In: Urban Remote Sensing Joint Event, 2007. IEEE, pp 1–5
    • (2007) Urban Remote Sensing Joint Event, 2007. IEEE , pp. 1-5
    • Sertel, E.1    Kaya, S.2    Curran, P.3
  • 89
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • Sheng G, Yang W, Xu T, Sun H (2012) High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int J Remote Sens 33:2395–2412
    • (2012) Int J Remote Sens , vol.33 , pp. 2395-2412
    • Sheng, G.1    Yang, W.2    Xu, T.3    Sun, H.4
  • 90
    • 85034968011 scopus 로고    scopus 로고
    • Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks
    • Sun X, Shen S, Lin X, Hu Z (2017) Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks. J Appl Remote Sens 11:042617
    • (2017) J Appl Remote Sens , vol.11 , pp. 042617
    • Sun, X.1    Shen, S.2    Lin, X.3    Hu, Z.4
  • 91
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • Tang J, Deng C, Huang G-B, Zhao B (2015) Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53:1174–1185
    • (2015) IEEE Trans Geosci Remote Sens , vol.53 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.-B.3    Zhao, B.4
  • 94
    • 70450153793 scopus 로고    scopus 로고
    • Quick shift and kernel methods for mode seeking Computer vision
    • Vedaldi A, Soatto S (2008) Quick shift and kernel methods for mode seeking Computer vision. ECCV 2008:705–718
    • (2008) ECCV , vol.2008 , pp. 705-718
    • Vedaldi, A.1    Soatto, S.2
  • 95
    • 85019963914 scopus 로고    scopus 로고
    • Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images
    • Wang H, Wang Y, Zhang Q, Xiang S, Pan C (2017) Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images. Remote Sens 9:446
    • (2017) Remote Sens , vol.9 , pp. 446
    • Wang, H.1    Wang, Y.2    Zhang, Q.3    Xiang, S.4    Pan, C.5
  • 96
    • 84969143021 scopus 로고    scopus 로고
    • Automatic detection and classification of oil tanks in optical satellite images based on convolutional neural network
    • Wang Q, Zhang J, Hu X, Wang Y (2016) Automatic detection and classification of oil tanks in optical satellite images based on convolutional neural network. In: International Conference on Image and Signal Processing. Springer, pp 304–313
    • (2016) International Conference on Image and Signal Processing. Springer , pp. 304-313
    • Wang, Q.1    Zhang, J.2    Hu, X.3    Wang, Y.4
  • 98
    • 85028920597 scopus 로고    scopus 로고
    • Airport detection based on a multiscale fusion feature for optical remote sensing images
    • Xiao Z, Gong Y, Long Y, Li D, Wang X, Liu H (2017a) Airport detection based on a multiscale fusion feature for optical remote sensing images. IEEE Geosci Remote Sens Lett 14:1469–1473
    • (2017) IEEE Geosci Remote Sens Lett , vol.14 , pp. 1469-1473
    • Xiao, Z.1    Gong, Y.2    Long, Y.3    Li, D.4    Wang, X.5    Liu, H.6
  • 99
    • 84961384320 scopus 로고    scopus 로고
    • Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images
    • Xiao Z, Liu Q, Tang G, Zhai X (2015) Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int J Remote Sens 36:618–644
    • (2015) Int J Remote Sens , vol.36 , pp. 618-644
    • Xiao, Z.1    Liu, Q.2    Tang, G.3    Zhai, X.4
  • 100
    • 85060747068 scopus 로고    scopus 로고
    • High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective
    • Xiao Z, Long Y, Li D, Wei C, Tang G, Liu J (2017b) High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective. Remote Sens 9:725
    • (2017) Remote Sens , vol.9 , pp. 725
    • Xiao, Z.1    Long, Y.2    Li, D.3    Wei, C.4    Tang, G.5    Liu, J.6
  • 103
    • 33745615125 scopus 로고    scopus 로고
    • Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
    • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006) Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sens 72:799–811
    • (2006) Photogramm Eng Remote Sens , vol.72 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 104
    • 84930423638 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue J, Zhao W, Mao S, Liu H (2015) Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters 6:468–477
    • (2015) Remote Sensing Letters , vol.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 105
    • 84973571837 scopus 로고    scopus 로고
    • Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
    • Zhang F, Du B, Zhang L, Xu M (2016) Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Trans Geosci Remote Sens 54:5553–5563
    • (2016) IEEE Trans Geosci Remote Sens , vol.54 , pp. 5553-5563
    • Zhang, F.1    Du, B.2    Zhang, L.3    Xu, M.4
  • 106
    • 85020742995 scopus 로고    scopus 로고
    • Airport detection on optical satellite images using deep convolutional neural networks
    • (, a
    • Zhang P, Niu X, Dou Y, Xia F (2017a) Airport detection on optical satellite images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 14(8):1183–1187
    • (2017) IEEE Geosci Remote Sens Lett , vol.14 , Issue.8 , pp. 1183-1187
    • Zhang, P.1    Niu, X.2    Dou, Y.3    Xia, F.4
  • 107
    • 85019861283 scopus 로고    scopus 로고
    • Hyperspectral Target Detection via Adaptive Joint Sparse Representation and Multi-Task Learning with Locality Information
    • Zhang Y, Wu K, Du B, Zhang L, Hu X (2017b) Hyperspectral Target Detection via Adaptive Joint Sparse Representation and Multi-Task Learning with Locality Information. Remote Sens 9:482
    • (2017) Remote Sens , vol.9 , pp. 482
    • Zhang, Y.1    Wu, K.2    Du, B.3    Zhang, L.4    Hu, X.5
  • 108
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao W, Du S (2016a) Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J Photogramm Remote Sens 113:155–165
    • (2016) ISPRS J Photogramm Remote Sens , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 109
    • 84979492674 scopus 로고    scopus 로고
    • Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Zhao W, Du S (2016b) Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54:4544–4554
    • (2016) IEEE Trans Geosci Remote Sens , vol.54 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 111
    • 85018640168 scopus 로고    scopus 로고
    • Superpixel-based multiple local CNN for panchromatic and multispectral image classification
    • Zhao W et al (2017b) Superpixel-based multiple local CNN for panchromatic and multispectral image classification. IEEE Trans Geosci Remote Sens 55:4141–4156
    • (2017) IEEE Trans Geosci Remote Sens , vol.55 , pp. 4141-4156
    • Zhao, W.1
  • 112
    • 66049089993 scopus 로고    scopus 로고
    • Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study
    • Zhou W, Huang G, Troy A, Cadenasso M (2009) Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens Environ 113:1769–1777
    • (2009) Remote Sens Environ , vol.113 , pp. 1769-1777
    • Zhou, W.1    Huang, G.2    Troy, A.3    Cadenasso, M.4
  • 113
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Zou Q, Ni L, Zhang T, Wang Q (2015) Deep learning based feature selection for remote sensing scene classification. IEEE Geosci Remote Sens Lett 12:2321–2325
    • (2015) IEEE Geosci Remote Sens Lett , vol.12 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.