-
1
-
-
0001854919
-
Topological groups
-
(K. Kunen and J. Vaughan, eds.), North-Holland
-
Comfort W.W., Topological groups, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1143-1263
-
(1984)
Handbook of Set-Theoretic Topology
, pp. 1143-1263
-
-
Comfort, W.W.1
-
2
-
-
0002052467
-
Problems on topological groups and other homogeneous spaces
-
(J. van Mill and G. M. Reed, eds.), North-Holland
-
ComfortW.W., Problems on topological groups and other homogeneous spaces, Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp. 311-347
-
(1990)
Open Problems in Topology
, pp. 311-347
-
-
Comfort, W.W.1
-
3
-
-
0000682030
-
Imposing pseudocompact group topologies on Abelian groups
-
Comfort W.W., Remus D., Imposing pseudocompact group topologies on Abelian groups, Fundamenta Mathematica 142 (1993), 221-240
-
(1993)
Fundamenta Mathematica
, vol.142
, pp. 221-240
-
-
Comfort, W.W.1
Remus, D.2
-
4
-
-
0000256465
-
Pseudocompact topologies on groups
-
Dikranjan D., Shakhmatov D., Pseudocompact topologies on groups, Topology Proc. 17 (1992), 335-342
-
(1992)
Topology Proc
, vol.17
, pp. 335-342
-
-
Dikranjan, D.1
Shakhmatov, D.2
-
5
-
-
0000908042
-
The product of two countably compact topological groups
-
van Douwen E.K., The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980), 417-427
-
(1980)
Trans. Amer. Math. Soc
, vol.262
, pp. 417-427
-
-
van Douwen, E.K.1
-
7
-
-
84968511046
-
A countably compact H such that H×H is not countably compact
-
Hart K.P., van Mill J., A countably compact H such that H×H is not countably compact, Trans. Amer. Math. Soc. 323 (1991), 811-821
-
(1991)
Trans. Amer. Math. Soc
, vol.323
, pp. 811-821
-
-
Hart, K.P.1
van Mill, J.2
-
8
-
-
49349132671
-
A separable normal topological group need not be Lindelöf
-
Hajnal A., Juhasz I., A separable normal topological group need not be Lindelöf, General Topology Appl. 6 (1976), 199-205
-
(1976)
General Topology Appl
, vol.6
, pp. 199-205
-
-
Hajnal, A.1
Juhasz, I.2
-
10
-
-
0011271130
-
An answer to A.D. Wallace's question about countably compact cancellative semigroups
-
Robbie D., Svetlichny S., An answer to A.D. Wallace's question about countably compact cancellative semigroups, Proc. Amer. Math. Soc. 124 (1996), 325-330
-
(1996)
Proc. Amer. Math. Soc
, vol.124
, pp. 325-330
-
-
Robbie, D.1
Svetlichny, S.2
-
11
-
-
0002389148
-
Countably compact and pseudocompact topologies on free Abelian groups
-
Tkachenko M.G., Countably compact and pseudocompact topologies on free Abelian groups, Izvestia VUZ. Matematika 34 (1990), 68-75
-
(1990)
Izvestia VUZ. Matematika
, vol.34
, pp. 68-75
-
-
Tkachenko, M.G.1
-
12
-
-
0030472163
-
The Wallace Problem: a counterexample from MAcountable and p-compactness
-
Tomita A.H., The Wallace Problem: a counterexample from MAcountable and p-compactness, Canadian Math. Bull. 39 (1996), no. 4, 486-498
-
(1996)
Canadian Math. Bull
, vol.39
, Issue.4
, pp. 486-498
-
-
Tomita, A.H.1
-
13
-
-
0005580966
-
On finite powers of countably compact groups
-
Tomita A.H., On finite powers of countably compact groups, Comment. Math. Univ. Carolinae 37 (1996), no. 3, 617-626
-
(1996)
Comment. Math. Univ. Carolinae
, vol.37
, Issue.3
, pp. 617-626
-
-
Tomita, A.H.1
-
16
-
-
0002380964
-
Countably compact and sequentially compact spaces
-
(K. Kunen and J. Vaughan, eds.), North-Holland
-
Vaughan J., Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 569-602
-
(1984)
Handbook of Set-Theoretic Topology
, pp. 569-602
-
-
Vaughan, J.1
-
17
-
-
0002937461
-
The structure of topological semigroups
-
Wallace A.D., The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112
-
(1955)
Bull. Amer. Math. Soc
, vol.61
, pp. 95-112
-
-
Wallace, A.D.1
-
18
-
-
0002875217
-
Versions of Martin's Axiom
-
(K. Kunen and J. Vaughan, eds.), North-Holland
-
Weiss W., Versions of Martin's Axiom, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 827-886
-
(1984)
Handbook of Set-Theoretic Topology
, pp. 827-886
-
-
Weiss, W.1
|