메뉴 건너뛰기




Volumn 62, Issue 2, 2020, Pages 479-491

Multilevel regression and poststratification as a modeling approach for estimating population quantities in large population health studies: A simulation study

Author keywords

multilevel regression and poststratification; participation bias; selection bias; simulation; survey weighting

Indexed keywords

POPULATION STATISTICS;

EID: 85067336281     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201900023     Document Type: Article
Times cited : (15)

References (28)
  • 1
    • 84957951205 scopus 로고    scopus 로고
    • 0. Canberra, ACT Australian Bureau of Statistics
    • Australian Bureau of Statistics (2011). How Australia takes a Census 2011. Report No.: 2903.0. Canberra, ACT: Australian Bureau of Statistics.
    • (2011) How Australia takes a Census 2011
  • 3
    • 84983058870 scopus 로고    scopus 로고
    • Retrieved from
    • Australian Government Bureau of Meteorology (2018). Climate data online. Retrieved from http://www.bom.gov.au/climate/data/index.shtml
    • (2018) Climate data online
  • 4
    • 85153144536 scopus 로고    scopus 로고
    • Land areas of states and territories, Retrieved from
    • Australian Government Geoscience Australia (2019). Land areas of states and territories. Retrieved from https://www.ga.gov.au/scientific-topics/national-location-information/dimensions/area-of-australia-states-and-territories
    • (2019)
  • 7
    • 84885767799 scopus 로고    scopus 로고
    • How does multilevel regression and poststratification perform with conventional national surveys?
    • Buttice, M. K., & Highton, B. (2013). How does multilevel regression and poststratification perform with conventional national surveys? Political Analysis, 21, 449–467.
    • (2013) Political Analysis , vol.21 , pp. 449-467
    • Buttice, M.K.1    Highton, B.2
  • 9
    • 85055119529 scopus 로고    scopus 로고
    • Multilevel regression and poststratification: A modelling approach to estimating population quantities from highly selected survey samples
    • Downes, M., Gurrin, L., English, D., Pirkis, J., Currier, D., Spittal, M. J., & Carlin, J. B. (2018). Multilevel regression and poststratification: A modelling approach to estimating population quantities from highly selected survey samples. American Journal of Epidemiology, 187, 1780–1790.
    • (2018) American Journal of Epidemiology , vol.187 , pp. 1780-1790
    • Downes, M.1    Gurrin, L.2    English, D.3    Pirkis, J.4    Currier, D.5    Spittal, M.J.6    Carlin, J.B.7
  • 11
    • 49449108749 scopus 로고    scopus 로고
    • Struggles with survey weighting and regression modeling
    • Gelman, A. (2007). Struggles with survey weighting and regression modeling. Statistical Science, 22, 153–164.
    • (2007) Statistical Science , vol.22 , pp. 153-164
    • Gelman, A.1
  • 12
    • 33744955083 scopus 로고    scopus 로고
    • Poststratification and weighting adjustments
    • R. M. Groves, D. A. Dillman, J. L. Eltinge, R. J. A. Little, (Eds.),, New York, NY, Wiley
    • Gelman, A., & Carlin, J. (2002). Poststratification and weighting adjustments. In R. M. Groves, D. A. Dillman, J. L. Eltinge, & R. J. A. Little (Eds.), Survey Nonresponse (pp. 289–302). New York, NY: Wiley.
    • (2002) Survey Nonresponse , pp. 289-302
    • Gelman, A.1    Carlin, J.2
  • 14
    • 0040488008 scopus 로고    scopus 로고
    • Poststratification into many categories using hierarchical logistic regression
    • Gelman, A., & Little, T. C. (1997). Poststratification into many categories using hierarchical logistic regression. Survey Methodology, 23, 127–135.
    • (1997) Survey Methodology , vol.23 , pp. 127-135
    • Gelman, A.1    Little, T.C.2
  • 16
  • 18
    • 85035149700 scopus 로고    scopus 로고
    • Multilevel model to estimate county-level untreated dental caries among US children aged 6–9 years using the National Health and Nutrition Examination Survey
    • Lin, M., Zhang, X., Holt, J. B., Robison, V., Li, C. H., & Griffin, S. O. (2018). Multilevel model to estimate county-level untreated dental caries among US children aged 6–9 years using the National Health and Nutrition Examination Survey. Preventive Medicine, 111, 291–298.
    • (2018) Preventive Medicine , vol.111 , pp. 291-298
    • Lin, M.1    Zhang, X.2    Holt, J.B.3    Robison, V.4    Li, C.H.5    Griffin, S.O.6
  • 19
    • 85060135966 scopus 로고    scopus 로고
    • Using simulation studies to evaluate statistical methods
    • 38, 2074-2102
    • Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38, 2074-2102.
    • (2019) Statistics in Medicine
    • Morris, T.P.1    White, I.R.2    Crowther, M.J.3
  • 20
    • 21144438842 scopus 로고    scopus 로고
    • Bayesian multilevel estimation with poststratification: State-level estimates from national polls
    • Park, D. K., Gelman, A., & Bafumi, J. (2004). Bayesian multilevel estimation with poststratification: State-level estimates from national polls. Political Analysis, 12, 375–385.
    • (2004) Political Analysis , vol.12 , pp. 375-385
    • Park, D.K.1    Gelman, A.2    Bafumi, J.3
  • 22
    • 84856994110 scopus 로고    scopus 로고
    • Estimating constituency preferences from sparse survey data using auxillary geographic information
    • Selb, P., & Munzert, S. (2011). Estimating constituency preferences from sparse survey data using auxillary geographic information. Political Analysis, 19, 455–470.
    • (2011) Political Analysis , vol.19 , pp. 455-470
    • Selb, P.1    Munzert, S.2
  • 23
    • 84994008679 scopus 로고    scopus 로고
    • The Australian Longitudinal Study on Male Health sampling design and survey weighting: Implications for analysis and interpretation of clustered data
    • Spittal, M., Carlin, J., Currier, D., Downes, M., English, D. R., Gordon, I., … Gurrin, L. (2016). The Australian Longitudinal Study on Male Health sampling design and survey weighting: Implications for analysis and interpretation of clustered data. BMC Public Health, 16(Suppl 3:1043), 15–22.
    • (2016) BMC Public Health , vol.16 , pp. 15-22
    • Spittal, M.1    Carlin, J.2    Currier, D.3    Downes, M.4    English, D.R.5    Gordon, I.6    Gurrin, L.7
  • 26
    • 84857163099 scopus 로고    scopus 로고
    • How should we measure district-level public opinion on individual issues?
    • Warshaw, C., & Rodden, J. (2012). How should we measure district-level public opinion on individual issues? The Journal of Politics, 74, 203–219.
    • (2012) The Journal of Politics , vol.74 , pp. 203-219
    • Warshaw, C.1    Rodden, J.2
  • 27
    • 84897441225 scopus 로고    scopus 로고
    • Multilevel regression and poststratification for small-area estimation of population health outcomes: A case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system
    • Zhang, X., Holt, J. B., Lu, H., Wheaton, A. G., Ford, E. S., Greenlund, K. J., & Croft, J. B. (2014). Multilevel regression and poststratification for small-area estimation of population health outcomes: A case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system. American Journal of Epidemiology, 179, 1025–1033.
    • (2014) American Journal of Epidemiology , vol.179 , pp. 1025-1033
    • Zhang, X.1    Holt, J.B.2    Lu, H.3    Wheaton, A.G.4    Ford, E.S.5    Greenlund, K.J.6    Croft, J.B.7
  • 28
    • 84936757960 scopus 로고    scopus 로고
    • Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system
    • Zhang, X., Holt, J. B., Yun, S., Lu, H., Greenlund, K. J., & Croft, J. B. (2015). Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system. American Journal of Epidemiology, 182, 127–137.
    • (2015) American Journal of Epidemiology , vol.182 , pp. 127-137
    • Zhang, X.1    Holt, J.B.2    Yun, S.3    Lu, H.4    Greenlund, K.J.5    Croft, J.B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.