-
1
-
-
85019418822
-
Agriculture in 2050: Recalibrating targets for sustainable intensification
-
[CrossRef]
-
Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386-391. [CrossRef]
-
(2017)
Bioscience
, vol.67
, pp. 386-391
-
-
Hunter, M.C.1
Smith, R.G.2
Schipanski, M.E.3
Atwood, L.W.4
Mortensen, D.A.5
-
2
-
-
84883640524
-
The adaptation and mitigation potential of traditional agriculture in a changing climate
-
[CrossRef]
-
Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2013, 140, 33-45. [CrossRef]
-
(2013)
Clim. Chang.
, vol.140
, pp. 33-45
-
-
Altieri, M.A.1
Nicholls, C.I.2
-
3
-
-
85046020421
-
A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region
-
[CrossRef] [PubMed]
-
Chawade, A.; Armoniene, R.; Berg, G.; Brazauskas, G.; Frostgard, G.; Geleta, M.; Gorash, A.; Henriksson, T.; Himanen, K.; Ingver, A.; et al. A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiol. Plant. 2018, 164, 442-451. [CrossRef] [PubMed]
-
(2018)
Physiol. Plant.
, vol.164
, pp. 442-451
-
-
Chawade, A.1
Armoniene, R.2
Berg, G.3
Brazauskas, G.4
Frostgard, G.5
Geleta, M.6
Gorash, A.7
Henriksson, T.8
Himanen, K.9
Ingver, A.10
-
4
-
-
40949130394
-
Marker-assisted selection: An approach for precision plant breeding in the twenty-first century
-
[CrossRef]
-
Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Boil. Sci. 2008, 363, 557-572. [CrossRef]
-
(2008)
Philos. Trans. R. Soc. B Boil. Sci.
, vol.363
, pp. 557-572
-
-
Collard, B.C.Y.1
MacKill, D.J.2
-
5
-
-
85049145900
-
Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat
-
[CrossRef]
-
Ghaffary, S.M.T.; Chawade, A.; Singh, P.K. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. Euphytica 2018, 214, 122. [CrossRef]
-
(2018)
Euphytica
, vol.214
, pp. 122
-
-
Ghaffary, S.M.T.1
Chawade, A.2
Singh, P.K.3
-
6
-
-
85018950575
-
New strategies and tools in quantitative genetics: How to go from the phenotype to the genotype
-
[CrossRef] [PubMed]
-
Bazakos, C.; Hanemian, M.; Trontin, C.; Jiménez-Gómez, J.M.; Loudet, O. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annu. Rev. Plant Biol. 2017, 68, 435-455. [CrossRef] [PubMed]
-
(2017)
Annu. Rev. Plant Biol.
, vol.68
, pp. 435-455
-
-
Bazakos, C.1
Hanemian, M.2
Trontin, C.3
Jiménez-Gómez, J.M.4
Loudet, O.5
-
7
-
-
84906943620
-
Genomic selection: Genome-wide prediction in plant improvement
-
[CrossRef]
-
Desta, Z.A.; Ortiz, R. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 2014, 19, 592-601. [CrossRef]
-
(2014)
Trends Plant Sci.
, vol.19
, pp. 592-601
-
-
Desta, Z.A.1
Ortiz, R.2
-
8
-
-
84878438205
-
Catalyzing plant science research with RNA-seq
-
[CrossRef] [PubMed]
-
Martin, L.B.B.; Fei, Z.; Giovannoni, J.J.; Rose, J.K.C. Catalyzing plant science research with RNA-seq. Front. Plant Sci. 2013, 4, 66. [CrossRef] [PubMed]
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 66
-
-
Martin, L.B.B.1
Fei, Z.2
Giovannoni, J.J.3
Rose, J.K.C.4
-
9
-
-
84891372805
-
Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis
-
[CrossRef]
-
Meijón, M.; Satbhai, S.B.; Tsuchimatsu, T.; Busch, W. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat. Genet. 2013, 46, 77-81. [CrossRef]
-
(2013)
Nat. Genet.
, vol.46
, pp. 77-81
-
-
Meijón, M.1
Satbhai, S.B.2
Tsuchimatsu, T.3
Busch, W.4
-
10
-
-
84957677420
-
Targeted proteomics approach for precision plant breeding
-
[CrossRef]
-
Chawade, A.; Alexandersson, E.; Bengtsson, T.; Andreasson, E.; Levander, F. Targeted proteomics approach for precision plant breeding. J. Proteome Res. 2016, 15, 638-646. [CrossRef]
-
(2016)
J. Proteome Res.
, vol.15
, pp. 638-646
-
-
Chawade, A.1
Alexandersson, E.2
Bengtsson, T.3
Andreasson, E.4
Levander, F.5
-
11
-
-
85043485025
-
Genetical genomics of quality related traits in potato tubers using proteomics
-
[CrossRef]
-
Acharjee, A.; Chibon, P.-Y.; Kloosterman, B.; America, T.; Renaut, J.; Maliepaard, C.; Visser, R.G.F. Genetical genomics of quality related traits in potato tubers using proteomics. BMC Plant Biol. 2018, 18, 20. [CrossRef]
-
(2018)
BMC Plant Biol.
, vol.18
, pp. 20
-
-
Acharjee, A.1
Chibon, P.-Y.2
Kloosterman, B.3
America, T.4
Renaut, J.5
Maliepaard, C.6
Visser, R.G.F.7
-
12
-
-
84979608085
-
Field-omics - Understanding large-scale molecular data from field crops
-
[CrossRef] [PubMed]
-
Alexandersson, E.; Jacobson, D.; Vivier, M.;Weckwerth, W.; Andreasson, E. Field-omics - Understanding large-scale molecular data from field crops. Front. Plant Sci. 2014, 5, 286. [CrossRef] [PubMed]
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 286
-
-
Alexandersson, E.1
Jacobson, D.2
Vivier, M.3
Weckwerth, W.4
Andreasson, E.5
-
13
-
-
84978922953
-
Plant disease detection by imaging sensors - Parallels and specific demands for precision agriculture and plant phenotyping
-
[CrossRef]
-
Mahlein, A.K. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241-251. [CrossRef]
-
(2016)
Plant Dis.
, vol.100
, pp. 241-251
-
-
Mahlein, A.K.1
-
14
-
-
85032751744
-
Image analysis: The new bottleneck in plant phenotyping [applications corner]
-
[CrossRef]
-
Minervini, M.; Scharr, H.; Tsaftaris, S.A. Image Analysis: The New Bottleneck in Plant Phenotyping [Applications Corner]. IEEE Signal Process. Mag. 2015, 32, 126-131. [CrossRef]
-
(2015)
IEEE Signal Process. Mag.
, vol.32
, pp. 126-131
-
-
Minervini, M.1
Scharr, H.2
Tsaftaris, S.A.3
-
15
-
-
85051008045
-
What is cost-efficient phenotyping? Optimizing costs for different scenarios
-
[CrossRef] [PubMed]
-
Reynolds, D.; Baret, F.; Welcker, C.; Bostrom, A.; Ball, J.; Cellini, F.; Lorence, A.; Chawade, A.; Khafif, M.; Noshita, K.; et al. What is cost-efficient phenotyping? Optimizing costs for different scenarios. Plant Sci. 2019, 282, 14-22. [CrossRef] [PubMed]
-
(2019)
Plant Sci.
, vol.282
, pp. 14-22
-
-
Reynolds, D.1
Baret, F.2
Welcker, C.3
Bostrom, A.4
Ball, J.5
Cellini, F.6
Lorence, A.7
Chawade, A.8
Khafif, M.9
Noshita, K.10
-
16
-
-
0031433469
-
The sustainable intensification of agriculture
-
[CrossRef]
-
Pretty, J.N. The sustainable intensification of agriculture. Nat. Resour. Forum 1997, 21, 247-256. [CrossRef]
-
(1997)
Nat. Resour. Forum
, vol.21
, pp. 247-256
-
-
Pretty, J.N.1
-
17
-
-
2142743255
-
Nitrogen and the baltic sea: Managing nitrogen in relation to phosphorus
-
[CrossRef] [PubMed]
-
Elmgren, R.; Larsson, U. Nitrogen and the Baltic Sea: Managing nitrogen in relation to phosphorus. Sci.World J. 2001, 1, 371-377. [CrossRef] [PubMed]
-
(2001)
Sci.World J.
, vol.1
, pp. 371-377
-
-
Elmgren, R.1
Larsson, U.2
-
18
-
-
85016114538
-
Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region - A status
-
[CrossRef]
-
Heick, T.M.; Justesen, A.F.; Jørgensen, L.N. Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region - A status. Eur. J. Plant Pathol. 2017, 149, 669-682. [CrossRef]
-
(2017)
Eur. J. Plant Pathol.
, vol.149
, pp. 669-682
-
-
Heick, T.M.1
Justesen, A.F.2
Jørgensen, L.N.3
-
19
-
-
85042195411
-
Advances in variable rate technology application in potato in the netherlands
-
[CrossRef] [PubMed]
-
Kempenaar, C.; Been, T.; Booij, J.; van Evert, F.; Michielsen, J.-M.; Kocks, C. Advances in Variable Rate Technology Application in Potato in The Netherlands. Potato Res. 2018, 60, 295-305. [CrossRef] [PubMed]
-
(2018)
Potato Res.
, vol.60
, pp. 295-305
-
-
Kempenaar, C.1
Been, T.2
Booij, J.3
Van Evert, F.4
Michielsen, J.-M.5
Kocks, C.6
-
20
-
-
77954143049
-
Spectral signatures of sugar beet leaves for the detection and differentiation of diseases
-
[CrossRef]
-
Mahlein, A.K.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 2010, 11, 413-431. [CrossRef]
-
(2010)
Precis. Agric.
, vol.11
, pp. 413-431
-
-
Mahlein, A.K.1
Steiner, U.2
Dehne, H.W.3
Oerke, E.C.4
-
21
-
-
85043993701
-
Translating high-throughput phenotyping into genetic gain
-
[CrossRef] [PubMed]
-
Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451-466. [CrossRef] [PubMed]
-
(2018)
Trends Plant Sci.
, vol.23
, pp. 451-466
-
-
Araus, J.L.1
Kefauver, S.C.2
Zaman-Allah, M.3
Olsen, M.S.4
Cairns, J.E.5
-
22
-
-
84994235616
-
Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
-
[CrossRef] [PubMed]
-
Rutkoski, J.; Poland, J.; Mondal, S.; Autrique, E.; Pérez, L.G.; Crossa, J.; Reynolds, M.; Singh, R. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3 Genes Genomes Genet. 2016, 6, 2799-2808. [CrossRef] [PubMed]
-
(2016)
G3 Genes Genomes Genet.
, vol.6
, pp. 2799-2808
-
-
Rutkoski, J.1
Poland, J.2
Mondal, S.3
Autrique, E.4
Pérez, L.G.5
Crossa, J.6
Reynolds, M.7
Singh, R.8
-
23
-
-
84984653696
-
A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding
-
[CrossRef]
-
Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Front. Plant Sci. 2016, 7, 1131. [CrossRef]
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1131
-
-
Tattaris, M.1
Reynolds, M.P.2
Chapman, S.C.3
-
24
-
-
85057795315
-
High resolution satellite imaging sensors for precision agriculture
-
[CrossRef]
-
Yang, C. High resolution satellite imaging sensors for precision agriculture. Front. Agric. Sci. Eng. 2018, 5, 393-405. [CrossRef]
-
(2018)
Front. Agric. Sci. Eng.
, vol.5
, pp. 393-405
-
-
Yang, C.1
-
25
-
-
0442298832
-
Remote sensing applications for precision agriculture: A learning community approach
-
[CrossRef]
-
Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157-169. [CrossRef]
-
(2003)
Remote Sens. Environ.
, vol.88
, pp. 157-169
-
-
Seelan, S.K.1
Laguette, S.2
Casady, G.M.3
Seielstad, G.A.4
-
26
-
-
85070786984
-
Digital soil mapping of arable land in Sweden - Validation of performance at multiple scales
-
[CrossRef]
-
Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden - Validation of performance at multiple scales. Geoderma 2017. [CrossRef]
-
(2017)
Geoderma
-
-
Piikki, K.1
Söderström, M.2
-
27
-
-
84939543001
-
Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review
-
[CrossRef]
-
Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112-123. [CrossRef]
-
(2015)
Eur. J. Agron.
, vol.70
, pp. 112-123
-
-
Sankaran, S.1
Khot, L.R.2
Espinoza, C.Z.3
Jarolmasjed, S.4
Sathuvalli, V.R.5
Vandemark, G.J.6
Miklas, P.N.7
Carter, A.H.8
Pumphrey, M.O.9
Knowles, N.R.10
-
28
-
-
84932599006
-
Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize
-
[CrossRef]
-
Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [CrossRef]
-
(2015)
Plant Methods
, vol.11
, pp. 35
-
-
Zaman-Allah, M.1
Vergara, O.2
Araus, J.L.3
Tarekegne, A.4
Magorokosho, C.5
Zarco-Tejada, P.J.6
Hornero, A.7
Albà, A.H.8
Das, B.9
Craufurd, P.10
-
29
-
-
85011310839
-
Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds
-
[CrossRef]
-
De Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218-2230. [CrossRef]
-
(2017)
Int. J. Remote Sens.
, vol.38
, pp. 2218-2230
-
-
De Souza, C.H.W.1
Lamparelli, R.A.C.2
Rocha, J.V.3
Magalhães, P.S.G.4
-
30
-
-
44649115314
-
Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots
-
[CrossRef]
-
Lelong, C.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557-3585. [CrossRef]
-
(2008)
Sensors
, vol.8
, pp. 3557-3585
-
-
Lelong, C.1
Burger, P.2
Jubelin, G.3
Roux, B.4
Labbé, S.5
Baret, F.6
-
31
-
-
85119135186
-
Aerial images and convolutional neural network for cotton bloom detection
-
[CrossRef]
-
Xu, R.; Li, C.; Paterson, A.H.; Jiang, Y.; Sun, S.; Robertson, J.S. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection. Front. Plant Sci. 2018, 8, 2235. [CrossRef]
-
(2018)
Front. Plant Sci.
, vol.8
, pp. 2235
-
-
Xu, R.1
Li, C.2
Paterson, A.H.3
Jiang, Y.4
Sun, S.5
Robertson, J.S.6
-
32
-
-
85030838277
-
Uav-based thermal imaging for high-throughput field phenotyping of black poplar response to drought
-
[CrossRef] [PubMed]
-
Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [CrossRef] [PubMed]
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 1681
-
-
Ludovisi, R.1
Tauro, F.2
Salvati, R.3
Khoury, S.4
Mugnozza Scarascia, G.5
Harfouche, A.6
-
33
-
-
85043775154
-
Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging
-
[CrossRef]
-
Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 2018, 14, 20. [CrossRef]
-
(2018)
Plant Methods
, vol.14
, pp. 20
-
-
Khan, Z.1
Rahimi-Eichi, V.2
Haefele, S.3
Garnett, T.4
Miklavcic, S.J.5
-
34
-
-
85021163000
-
Digital counts of maize plants by unmanned aerial vehicles (uavs)
-
[CrossRef]
-
Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sens. 2017, 9, 544. [CrossRef]
-
(2017)
Remote Sens.
, vol.9
, pp. 544
-
-
Gnädinger, F.1
Schmidhalter, U.2
-
35
-
-
85035765532
-
High-throughput phenotyping of plant height: Comparing unmanned aerial vehicles and ground lidar estimates
-
[CrossRef] [PubMed]
-
Madec, S.; Baret, F.; de Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 2002. [CrossRef] [PubMed]
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 2002
-
-
Madec, S.1
Baret, F.2
De Solan, B.3
Thomas, S.4
Dutartre, D.5
Jezequel, S.6
Hemmerlé, M.7
Colombeau, G.8
Comar, A.9
-
36
-
-
84912137635
-
Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
-
[CrossRef]
-
Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335-10355. [CrossRef]
-
(2014)
Remote Sens.
, vol.6
, pp. 10335-10355
-
-
Geipel, J.1
Link, J.2
Claupein, W.3
-
37
-
-
84939454114
-
Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
-
[CrossRef]
-
Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinform. 2015, 39, 79-87. [CrossRef]
-
(2015)
Int. J. Appl. Earth Obs. Geoinform.
, vol.39
, pp. 79-87
-
-
Bendig, J.1
Yu, K.2
Aasen, H.3
Bolten, A.4
Bennertz, S.5
Broscheit, J.6
Gnyp, M.L.7
Bareth, G.8
-
38
-
-
84923012445
-
Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
-
[CrossRef]
-
Chapman, S.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.; Holland, E.; Zheng, B.; Ling, T.; Jimenez-Berni, J. Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy 2014, 4, 279-301. [CrossRef]
-
(2014)
Agronomy
, vol.4
, pp. 279-301
-
-
Chapman, S.1
Merz, T.2
Chan, A.3
Jackway, P.4
Hrabar, S.5
Dreccer, M.6
Holland, E.7
Zheng, B.8
Ling, T.9
Jimenez-Berni, J.10
-
39
-
-
84908509157
-
Proximal remote sensing buggies and potential applications for field-based phenotyping
-
[CrossRef]
-
Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy 2014, 4, 349-379. [CrossRef]
-
(2014)
Agronomy
, vol.4
, pp. 349-379
-
-
Deery, D.1
Jimenez-Berni, J.2
Jones, H.3
Sirault, X.4
Furbank, R.5
-
40
-
-
0006835571
-
The use of canopy temperature as an indicator of drought stress in humid regions
-
[CrossRef]
-
Keener, M.E.; Kircher, P.L. The use of canopy temperature as an indicator of drought stress in humid regions. Agric. Meteorol. 1983, 28, 339-349. [CrossRef]
-
(1983)
Agric. Meteorol.
, vol.28
, pp. 339-349
-
-
Keener, M.E.1
Kircher, P.L.2
-
41
-
-
85049242113
-
Specalyzer - An interactive online tool to analyze spectral reflectance measurements
-
[CrossRef] [PubMed]
-
Koc, A.; Henriksson, T.; Chawade, A. Specalyzer - An interactive online tool to analyze spectral reflectance measurements. PeerJ 2018, 6, e5031. [CrossRef] [PubMed]
-
(2018)
PeerJ
, vol.6
, pp. e5031
-
-
Koc, A.1
Henriksson, T.2
Chawade, A.3
-
42
-
-
85014875300
-
Assessing wheat traits by spectral reflectance: Dowe really need to focus on predicted trait-values or directly identify the elite genotypes group?
-
[CrossRef]
-
Garriga, M.; Romero-Bravo, S.; Estrada, F.; Escobar, A.; Matus, I.A.; del Pozo, A.; Astudillo, C.A.; Lobos, G.A. Assessing Wheat Traits by Spectral Reflectance: DoWe Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group? Front. Plant Sci. 2017, 8, 280. [CrossRef]
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 280
-
-
Garriga, M.1
Romero-Bravo, S.2
Estrada, F.3
Escobar, A.4
Matus, I.A.5
Del Pozo, A.6
Astudillo, C.A.7
Lobos, G.A.8
-
43
-
-
35948985621
-
Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
-
[CrossRef]
-
Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187-197. [CrossRef]
-
(2007)
Precis. Agric.
, vol.8
, pp. 187-197
-
-
Huang, W.1
Lamb, D.W.2
Niu, Z.3
Zhang, Y.4
Liu, L.5
Wang, J.6
-
44
-
-
85047509282
-
Proximal phenotyping and machine learning methods to identify septoria tritici blotch disease symptoms in wheat
-
[CrossRef] [PubMed]
-
Odilbekov, F.; Armoniene, R.; Henriksson, T.; Chawade, A. Proximal Phenotyping and Machine Learning Methods to Identify Septoria Tritici Blotch Disease Symptoms in Wheat. Front. Plant Sci. 2018, 9, 685. [CrossRef] [PubMed]
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 685
-
-
Odilbekov, F.1
Armoniene, R.2
Henriksson, T.3
Chawade, A.4
-
45
-
-
30344475483
-
Relationship between the normalized spad index and the nitrogen nutrition index: Application to durum wheat
-
[CrossRef]
-
Debaeke, P.; Rouet, P.; Justes, E. Relationship Between the Normalized SPAD Index and the Nitrogen Nutrition Index: Application to Durum Wheat. J. Plant Nutr. 2006, 29, 75-92. [CrossRef]
-
(2006)
J. Plant Nutr.
, vol.29
, pp. 75-92
-
-
Debaeke, P.1
Rouet, P.2
Justes, E.3
-
46
-
-
84892750944
-
Spad values and nitrogen nutrition index for the evaluation of rice nitrogen status
-
[CrossRef]
-
Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Prod. Sci. 2015, 17, 81-92. [CrossRef]
-
(2015)
Plant Prod. Sci.
, vol.17
, pp. 81-92
-
-
Yang, H.1
Yang, J.2
Lv, Y.3
He, J.4
-
47
-
-
85050520106
-
Measurement of chlorophyll content to determine nutrition deficiency in plants: A systematic literature review
-
Bandung, Indonesia, 23-24 October
-
Andrianto, H.; Suhardi; Faizal, A. Measurement of chlorophyll content to determine nutrition deficiency in plants: A systematic literature review. In Proceedings of the 2017 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 23-24 October 2017; pp. 392-397.
-
(2017)
Proceedings of the 2017 International Conference on Information Technology Systems and Innovation (ICITSI)
, pp. 392-397
-
-
Andrianto, H.1
Suhardi2
Faizal, A.3
-
48
-
-
84855510815
-
Development of a model system to identify differences in spring and winter oat
-
[CrossRef] [PubMed]
-
Chawade, A.; Linden, P.; Brautigam, M.; Jonsson, R.; Jonsson, A.; Moritz, T.; Olsson, O. Development of a model system to identify differences in spring and winter oat. PLoS ONE 2012, 7, e29792. [CrossRef] [PubMed]
-
(2012)
PLoS ONE
, vol.7
, pp. e29792
-
-
Chawade, A.1
Linden, P.2
Brautigam, M.3
Jonsson, R.4
Jonsson, A.5
Moritz, T.6
Olsson, O.7
-
49
-
-
84964839920
-
Development and deployment of a portable field phenotyping platform
-
[CrossRef]
-
Crain, J.L.; Wei, Y.; Barker, J.; Thompson, S.M.; Alderman, P.D.; Reynolds, M.; Zhang, N.; Poland, J. Development and Deployment of a Portable Field Phenotyping Platform. Crop Sci. 2016, 56, 965-975. [CrossRef]
-
(2016)
Crop Sci.
, vol.56
, pp. 965-975
-
-
Crain, J.L.1
Wei, Y.2
Barker, J.3
Thompson, S.M.4
Alderman, P.D.5
Reynolds, M.6
Zhang, N.7
Poland, J.8
-
50
-
-
84878754086
-
A flexible, low-cost cart for proximal sensing
-
[CrossRef]
-
White, J.W.; Conley, M.M. A Flexible, Low-Cost Cart for Proximal Sensing. Crop Sci. 2013, 53, 1646-1649. [CrossRef]
-
(2013)
Crop Sci.
, vol.53
, pp. 1646-1649
-
-
White, J.W.1
Conley, M.M.2
-
51
-
-
85046901712
-
Deploying a proximal sensing cart to identify drought-adaptive traits in upland cotton for high-throughput phenotyping
-
[CrossRef] [PubMed]
-
Thompson, A.L.; Thorp, K.R.; Conley, M.; Andrade-Sanchez, P.; Heun, J.T.; Dyer, J.M.; White, J.W. Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping. Front. Plant Sci. 2018, 9, 507. [CrossRef] [PubMed]
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 507
-
-
Thompson, A.L.1
Thorp, K.R.2
Conley, M.3
Andrade-Sanchez, P.4
Heun, J.T.5
Dyer, J.M.6
White, J.W.7
-
52
-
-
84987933135
-
A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
-
[CrossRef]
-
Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 2016, 128, 181-192. [CrossRef]
-
(2016)
Comput. Electron. Agric.
, vol.128
, pp. 181-192
-
-
Bai, G.1
Ge, Y.2
Hussain, W.3
Baenziger, P.S.4
Graef, G.5
-
53
-
-
85034111095
-
High-throughput field phenotyping of leaves, leaf sheaths, culms and ears of spring barley cultivars at anthesis and dough ripeness
-
[CrossRef]
-
Barmeier, G.; Schmidhalter, U. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness. Front. Plant Sci. 2017, 8, 1920. [CrossRef]
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 1920
-
-
Barmeier, G.1
Schmidhalter, U.2
-
54
-
-
84966339697
-
Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley
-
[CrossRef]
-
Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44-59. [CrossRef]
-
(2016)
Eur. J. Agron.
, vol.78
, pp. 44-59
-
-
Rischbeck, P.1
Elsayed, S.2
Mistele, B.3
Barmeier, G.4
Heil, K.5
Schmidhalter, U.6
-
55
-
-
84995528561
-
High-throughput phenotyping of wheat and barley plants grown in single or few rows in small plots using active and passive spectral proximal sensing
-
[CrossRef]
-
Barmeier, G.; Schmidhalter, U. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing. Sensors 2016, 16, 1860. [CrossRef]
-
(1860)
Sensors
, vol.2016
, pp. 16
-
-
Barmeier, G.1
Schmidhalter, U.2
-
56
-
-
84890460571
-
Development and evaluation of a field-based high-throughput phenotyping platform
-
[CrossRef]
-
Andrade-Sanchez, P.; Gore, M.A.; Heun, J.T.; Thorp, K.R.; Carmo-Silva, A.E.; French, A.N.; Salvucci, M.E.; White, J.W. Development and evaluation of a field-based high-throughput phenotyping platform. Funct. Plant Biol. 2014, 41, 68-79. [CrossRef]
-
(2014)
Funct. Plant Biol.
, vol.41
, pp. 68-79
-
-
Andrade-Sanchez, P.1
Gore, M.A.2
Heun, J.T.3
Thorp, K.R.4
Carmo-Silva, A.E.5
French, A.N.6
Salvucci, M.E.7
White, J.W.8
-
57
-
-
85043392547
-
In-field high throughput phenotyping and cotton plant growth analysis using lidar
-
[CrossRef] [PubMed]
-
Sun, S.; Li, C.; Paterson, A.H.; Jiang, Y.; Xu, R.; Robertson, J.S.; Snider, J.L.; Chee, P.W. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR. Front. Plant Sci. 2018, 9, 16. [CrossRef] [PubMed]
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 16
-
-
Sun, S.1
Li, C.2
Paterson, A.H.3
Jiang, Y.4
Xu, R.5
Robertson, J.S.6
Snider, J.L.7
Chee, P.W.8
-
58
-
-
85040808600
-
Gphenovision: A ground mobile system with multi-modal imaging for field-based high throughput phenotyping of cotton
-
[CrossRef] [PubMed]
-
Jiang, Y.; Li, C.; Robertson, J.S.; Sun, S.; Xu, R.; Paterson, A.H. Gphenovision: A Ground Mobile System with Multi-modal Imaging for Field-Based High Throughput Phenotyping of Cotton. Sci. Rep. 2018, 8, 1213. [CrossRef] [PubMed]
-
(2018)
Sci. Rep.
, vol.8
, pp. 1213
-
-
Jiang, Y.1
Li, C.2
Robertson, J.S.3
Sun, S.4
Xu, R.5
Paterson, A.H.6
-
59
-
-
85006255885
-
The ETH field phenotyping platform FIP: A cable-suspended multi-sensor system
-
[CrossRef]
-
Kirchgessner, N.; Liebisch, F.; Yu, K.; Pfeifer, J.; Friedli, M.; Hund, A.; Walter, A. The ETH field phenotyping platform FIP: A cable-suspended multi-sensor system. Funct. Plant Boil. 2017, 44, 154-168. [CrossRef]
-
(2017)
Funct. Plant Boil.
, vol.44
, pp. 154-168
-
-
Kirchgessner, N.1
Liebisch, F.2
Yu, K.3
Pfeifer, J.4
Friedli, M.5
Hund, A.6
Walter, A.7
-
60
-
-
85024491712
-
Enhancing genetic gain in the era of molecular breeding
-
[CrossRef]
-
Xu, Y.; Li, P.; Zou, C.; Lu, Y.; Xie, C.; Zhang, X.; Prasanna, B.M.; Olsen, M.S. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 2017, 68, 2641-2666. [CrossRef]
-
(2017)
J. Exp. Bot.
, vol.68
, pp. 2641-2666
-
-
Xu, Y.1
Li, P.2
Zou, C.3
Lu, Y.4
Xie, C.5
Zhang, X.6
Prasanna, B.M.7
Olsen, M.S.8
-
61
-
-
84935499866
-
Meeting global food needs: Realizing the potential via genetics × environment × management interactions
-
[CrossRef]
-
Hatfield, J.L.;Walthall, C.L. Meeting Global Food Needs: Realizing the Potential via Genetics × Environment × Management Interactions. Agron. J. 2015, 107, 1215-1226. [CrossRef]
-
(2015)
Agron. J.
, vol.107
, pp. 1215-1226
-
-
Hatfield, J.L.1
Walthall, C.L.2
-
62
-
-
85036524454
-
What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
-
[CrossRef]
-
Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2017, 39, 5345-5376. [CrossRef]
-
(2017)
Int. J. Remote Sens.
, vol.39
, pp. 5345-5376
-
-
Hunt, E.R.1
Daughtry, C.S.T.2
-
63
-
-
85043758936
-
Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding
-
[CrossRef]
-
Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Combining High-Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding. Plant Genome 2018, 11. [CrossRef]
-
(2018)
Plant Genome
, pp. 11
-
-
Crain, J.1
Mondal, S.2
Rutkoski, J.3
Singh, R.P.4
Poland, J.5
-
64
-
-
85055485684
-
Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat
-
[CrossRef] [PubMed]
-
Juliana, P.; Montesinos-López, O.A.; Crossa, J.; Mondal, S.; González Pérez, L.; Poland, J.; Huerta-Espino, J.; Crespo-Herrera, L.; Govindan, V.; Dreisigacker, S.; et al. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor. Appl. Genet. 2018, 132, 177-194. [CrossRef] [PubMed]
-
(2018)
Theor. Appl. Genet.
, vol.132
, pp. 177-194
-
-
Juliana, P.1
Montesinos-López, O.A.2
Crossa, J.3
Mondal, S.4
González Pérez, L.5
Poland, J.6
Huerta-Espino, J.7
Crespo-Herrera, L.8
Govindan, V.9
Dreisigacker, S.10
-
65
-
-
84896108501
-
TraitCapture: Genomic and environment modelling of plant phenomic data
-
[CrossRef] [PubMed]
-
Brown, T.B.; Cheng, R.; Sirault, X.R.R.; Rungrat, T.; Murray, K.D.; Trtilek, M.; Furbank, R.T.; Badger, M.; Pogson, B.J.; Borevitz, J.O. TraitCapture: Genomic and environment modelling of plant phenomic data. Curr. Opin. Plant Biol. 2014, 18, 73-79. [CrossRef] [PubMed]
-
(2014)
Curr. Opin. Plant Biol.
, vol.18
, pp. 73-79
-
-
Brown, T.B.1
Cheng, R.2
Sirault, X.R.R.3
Rungrat, T.4
Murray, K.D.5
Trtilek, M.6
Furbank, R.T.7
Badger, M.8
Pogson, B.J.9
Borevitz, J.O.10
-
66
-
-
84958049448
-
Machine learning for high-throughput stress phenotyping in plants
-
[CrossRef]
-
Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110-124. [CrossRef]
-
(2016)
Trends Plant Sci.
, vol.21
, pp. 110-124
-
-
Singh, A.1
Ganapathysubramanian, B.2
Singh, A.K.3
Sarkar, S.4
-
67
-
-
85025090008
-
High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field
-
[CrossRef]
-
Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184-192. [CrossRef]
-
(2017)
Curr. Opin. Plant Biol.
, vol.38
, pp. 184-192
-
-
Shakoor, N.1
Lee, S.2
Mockler, T.C.3
-
68
-
-
85029412384
-
Comparison of visible imaging, thermography and spectrometry methods to evaluate the Effect of Heterodera schachtii inoculation on sugar beets
-
[CrossRef]
-
Joalland, S.; Screpanti, C.; Liebisch, F.; Varella, H.V.; Gaume, A.;Walter, A. Comparison of visible imaging, thermography and spectrometry methods to evaluate the Effect of Heterodera schachtii inoculation on sugar beets. Plant Methods 2017, 13, 73. [CrossRef]
-
(2017)
Plant Methods
, vol.13
, pp. 73
-
-
Joalland, S.1
Screpanti, C.2
Liebisch, F.3
Varella, H.V.4
Gaume, A.5
Walter, A.6
-
69
-
-
85047556650
-
Aerial and ground based sensing of tolerance to beet cyst nematode in sugar beet
-
[CrossRef]
-
Joalland, S.; Screpanti, C.; Varella, H.; Reuther, M.; Schwind, M.; Lang, C.; Walter, A.; Liebisch, F. Aerial and Ground Based Sensing of Tolerance to Beet Cyst Nematode in Sugar Beet. Remote Sens. 2018, 10, 787. [CrossRef]
-
(2018)
Remote Sens.
, vol.10
, pp. 787
-
-
Joalland, S.1
Screpanti, C.2
Varella, H.3
Reuther, M.4
Schwind, M.5
Lang, C.6
Walter, A.7
Liebisch, F.8
-
70
-
-
85043457085
-
Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors
-
[CrossRef]
-
Kuska, M.T.; Mahlein, A.K. Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. Eur. J. Plant Pathol. 2018, 152, 987-992. [CrossRef]
-
(2018)
Eur. J. Plant Pathol.
, vol.152
, pp. 987-992
-
-
Kuska, M.T.1
Mahlein, A.K.2
-
71
-
-
84884716201
-
The support vector machine (SVM) based near-infrared spectrum recognition of leaves infected by the leafminers
-
Beijing, China, 30 August-1 September
-
Wu, D.; Ma, C. The Support Vector Machine (SVM) Based Near-Infrared Spectrum Recognition of Leaves Infected by the Leafminers. In Proceedings of the First International Conference on Innovative Computing, Information and Control, Volume I (ICICIC'06), Beijing, China, 30 August-1 September 2006; pp. 448-451.
-
(2006)
Proceedings of the First International Conference on Innovative Computing, Information and Control, Volume i (ICICIC'06)
, pp. 448-451
-
-
Wu, D.1
Ma, C.2
-
72
-
-
84988564472
-
Using deep learning for image-based plant disease detection
-
[CrossRef]
-
Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [CrossRef]
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1419
-
-
Mohanty, S.P.1
Hughes, D.P.2
Salathé, M.3
-
73
-
-
85053609099
-
Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming
-
[CrossRef]
-
Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.;Walter, A.; Siegwart, R. WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming. Remote Sens. 2018, 10, 1423. [CrossRef]
-
(2018)
Remote Sens.
, vol.10
, pp. 1423
-
-
Sa, I.1
Popović, M.2
Khanna, R.3
Chen, Z.4
Lottes, P.5
Liebisch, F.6
Nieto, J.7
Stachniss, C.8
Walter, A.9
Siegwart, R.10
-
74
-
-
0028082658
-
Concepts of variable rate technology with considerations for fertilizer application
-
[CrossRef]
-
Sawyer, J.E. Concepts of Variable Rate Technology with Considerations for Fertilizer Application. J. Prod. Agric. 1994, 7, 195-201. [CrossRef]
-
(1994)
J. Prod. Agric.
, vol.7
, pp. 195-201
-
-
Sawyer, J.E.1
-
75
-
-
84925295161
-
Field testing of an automatic control system for variable rate fertilizer application
-
[CrossRef]
-
Reyes, J.F.; Esquivel, W.; Cifuentes, D.; Ortega, R. Field testing of an automatic control system for variable rate fertilizer application. Comput. Electron. Agric. 2015, 113, 260-265. [CrossRef]
-
(2015)
Comput. Electron. Agric.
, vol.113
, pp. 260-265
-
-
Reyes, J.F.1
Esquivel, W.2
Cifuentes, D.3
Ortega, R.4
-
76
-
-
85018485620
-
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
-
[CrossRef]
-
Naik, H.S.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23. [CrossRef]
-
(2017)
Plant Methods
, vol.13
, pp. 23
-
-
Naik, H.S.1
Zhang, J.2
Lofquist, A.3
Assefa, T.4
Sarkar, S.5
Ackerman, D.6
Singh, A.7
Singh, A.K.8
Ganapathysubramanian, B.9
-
77
-
-
0037327654
-
Early disease detection in wheat fields using spectral reflectance
-
[CrossRef]
-
Bravo, C.; Moshou, D.;West, J.; McCartney, A.; Ramon, H. Early Disease Detection in Wheat Fields using Spectral Reflectance. Biosyst. Eng. 2003, 84, 137-145. [CrossRef]
-
(2003)
Biosyst. Eng.
, vol.84
, pp. 137-145
-
-
Bravo, C.1
Moshou, D.2
West, J.3
McCartney, A.4
Ramon, H.5
-
78
-
-
85052638924
-
Using support vector machines classification to differentiate spectral signatures of potato plants infected with potato virus y
-
[CrossRef]
-
Griffel, L.M.; Delparte, D.; Edwards, J. Using Support Vector Machines classification to differentiate spectral signatures of potato plants infected with Potato Virus Y. Comput. Electron. Agric. 2018, 153, 318-324. [CrossRef]
-
(2018)
Comput. Electron. Agric.
, vol.153
, pp. 318-324
-
-
Griffel, L.M.1
Delparte, D.2
Edwards, J.3
-
79
-
-
84968862680
-
Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle
-
[CrossRef]
-
Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering 2016, 148, 1-10. [CrossRef]
-
(2016)
Biosystems Engineering
, vol.148
, pp. 1-10
-
-
Sugiura, R.1
Tsuda, S.2
Tamiya, S.3
Itoh, A.4
Nishiwaki, K.5
Murakami, N.6
Shibuya, Y.7
Hirafuji, M.8
Nuske, S.9
-
80
-
-
85061357547
-
Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato
-
[CrossRef]
-
Franceschini, M.H.D.; Bartholomeus, H.; van Apeldoorn, D.F.; Suomalainen, J.; Kooistra, L. Feasibility of Unmanned Aerial Vehicle Optical Imagery for Early Detection and Severity Assessment of Late Blight in Potato. Remote Sens. 2019, 11, 224. [CrossRef]
-
(2019)
Remote Sens.
, vol.11
, pp. 224
-
-
Franceschini, M.H.D.1
Bartholomeus, H.2
Van Apeldoorn, D.F.3
Suomalainen, J.4
Kooistra, L.5
-
81
-
-
1642344752
-
Safeguarding production - Losses in major crops and the role of crop protection
-
[CrossRef]
-
Oerke, E.C.; Dehne, H.W. Safeguarding production - Losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275-285. [CrossRef]
-
(2004)
Crop Prot.
, vol.23
, pp. 275-285
-
-
Oerke, E.C.1
Dehne, H.W.2
-
82
-
-
84875033328
-
Recent weed control, weed management, and integrated weed management
-
[CrossRef]
-
Harker, K.N.; O'Donovan, J.T. Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technol. 2017, 27, 1-11. [CrossRef]
-
(2017)
Weed Technol.
, vol.27
, pp. 1-11
-
-
Harker, K.N.1
O'Donovan, J.T.2
-
83
-
-
85046034633
-
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
-
[CrossRef]
-
Gonzalez-Andujar, J.L.; Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302. [CrossRef]
-
(2018)
PLoS ONE
, vol.13
, pp. e0196302
-
-
Gonzalez-Andujar, J.L.1
Huang, H.2
Deng, J.3
Lan, Y.4
Yang, A.5
Deng, X.6
Zhang, L.7
-
84
-
-
84928668178
-
Quantifying efficacy and limits of unmanned aerial vehicle (uav) technology forweed seedling detection as affected by sensor resolution
-
[CrossRef] [PubMed]
-
Peña, J.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.; López-Granados, F. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology forWeed Seedling Detection as affected by Sensor Resolution. Sensors 2015, 15, 5609-5626. [CrossRef] [PubMed]
-
(2015)
Sensors
, vol.15
, pp. 5609-5626
-
-
Peña, J.1
Torres-Sánchez, J.2
Serrano-Pérez, A.3
De Castro, A.4
López-Granados, F.5
-
85
-
-
84988962268
-
Decision support tools for agriculture: Towards effective design and delivery
-
[CrossRef]
-
Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.;Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards Effective design and delivery. Agric. Syst. 2016, 149, 165-174. [CrossRef]
-
(2016)
Agric. Syst.
, vol.149
, pp. 165-174
-
-
Rose, D.C.1
Sutherland, W.J.2
Parker, C.3
Lobley, M.4
Winter, M.5
Morris, C.6
Twining, S.7
Ffoulkes, C.8
Amano, T.9
Dicks, L.V.10
-
86
-
-
85018415591
-
Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case
-
[CrossRef]
-
Johannes, A.; Picon, A.; Alvarez-Gila, A.; Echazarra, J.; Rodriguez-Vaamonde, S.; Navajas, A.D.; Ortiz-Barredo, A. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 2017, 138, 200-209. [CrossRef]
-
(2017)
Comput. Electron. Agric.
, vol.138
, pp. 200-209
-
-
Johannes, A.1
Picon, A.2
Alvarez-Gila, A.3
Echazarra, J.4
Rodriguez-Vaamonde, S.5
Navajas, A.D.6
Ortiz-Barredo, A.7
-
87
-
-
85034097174
-
Deep learning for image-based cassava disease detection
-
[CrossRef]
-
Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease Detection. Front. Plant Sci. 2017, 8, 1852. [CrossRef]
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 1852
-
-
Ramcharan, A.1
Baranowski, K.2
McCloskey, P.3
Ahmed, B.4
Legg, J.5
Hughes, D.P.6
-
88
-
-
85040809810
-
Automated identification of sugar beet diseases using smartphones
-
[CrossRef]
-
Hallau, L.; Neumann, M.; Klatt, B.; Kleinhenz, B.; Klein, T.; Kuhn, C.; Röhrig, M.; Bauckhage, C.; Kersting, K.; Mahlein, A.K.; et al. Automated identification of sugar beet diseases using smartphones. Plant Pathol. 2018, 67, 399-410. [CrossRef]
-
(2018)
Plant Pathol.
, vol.67
, pp. 399-410
-
-
Hallau, L.1
Neumann, M.2
Klatt, B.3
Kleinhenz, B.4
Klein, T.5
Kuhn, C.6
Röhrig, M.7
Bauckhage, C.8
Kersting, K.9
Mahlein, A.K.10
-
89
-
-
84939963388
-
Potatoes for sustainable global food security
-
[CrossRef]
-
Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185-199. [CrossRef]
-
(2014)
Potato Res.
, vol.57
, pp. 185-199
-
-
Devaux, A.1
Kromann, P.2
Ortiz, O.3
-
90
-
-
84992692293
-
Overview and breeding strategies of table potato production in Sweden and the fennoscandian region
-
[CrossRef]
-
Eriksson, D.; Carlson-Nilsson, U.; Ortíz, R.; Andreasson, E. Overview and Breeding Strategies of Table Potato Production in Sweden and the Fennoscandian Region. Potato Res. 2016, 59, 279-294. [CrossRef]
-
(2016)
Potato Res.
, vol.59
, pp. 279-294
-
-
Eriksson, D.1
Carlson-Nilsson, U.2
Ortíz, R.3
Andreasson, E.4
-
91
-
-
85020000023
-
Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia
-
[CrossRef]
-
Gijzen, M.; Lehsten, V.;Wiik, L.; Hannukkala, A.; Andreasson, E.; Chen, D.; Ou, T.; Liljeroth, E.; Lankinen, Å.; Grenville-Briggs, L. Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE 2017, 12, e0177580. [CrossRef]
-
(2017)
PLoS ONE
, vol.12
, pp. e0177580
-
-
Gijzen, M.1
Lehsten, V.2
Wiik, L.3
Hannukkala, A.4
Andreasson, E.5
Chen, D.6
Ou, T.7
Liljeroth, E.8
Lankinen, Å.9
Grenville-Briggs, L.10
-
92
-
-
0000910453
-
Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering
-
[CrossRef]
-
Fry, W.E. Evaluation of Potato Late Blight Forecasts Modified to Incorporate Host Resistance and Fungicide Weathering. Phytopathology 1983, 73, 1054-1059. [CrossRef]
-
(1983)
Phytopathology
, vol.73
, pp. 1054-1059
-
-
Fry, W.E.1
-
93
-
-
85066428125
-
The possibilities and challenges of UAV-borne remote sensing for detection of potato late blight in the field
-
Department of Plant and Environmental Sciences, University of Copenhagen: Copenhagen, Denmark
-
Alexandersson, E.; Antkowiak, P.; Holmberg, M.; Piikki, K.; Söderström, M.; Liljeroth, E. The possibilities and challenges of UAV-borne remote sensing for detection of potato late blight in the field. In Abstract Book for the Plant Biology Europe Conference in Copenhagen; Department of Plant and Environmental Sciences, University of Copenhagen: Copenhagen, Denmark, 2018; p. 10, ISBN 978-87-996274-1-7.
-
(2018)
Abstract Book for the Plant Biology Europe Conference in Copenhagen
, pp. 10
-
-
Alexandersson, E.1
Antkowiak, P.2
Holmberg, M.3
Piikki, K.4
Söderström, M.5
Liljeroth, E.6
-
95
-
-
84994845357
-
Measures for interoperability of phenotypic data: Minimum information requirements and formatting
-
[CrossRef] [PubMed]
-
Ćwiek-Kupczyńska, H.; Altmann, T.; Arend, D.; Arnaud, E.; Chen, D.; Cornut, G.; Fiorani, F.; Frohmberg, W.; Junker, A.; Klukas, C.; et al. Measures for interoperability of phenotypic data: Minimum information requirements and formatting. Plant Methods 2016, 12, 44. [CrossRef] [PubMed]
-
(2016)
Plant Methods
, vol.12
, pp. 44
-
-
Ćwiek-Kupczyńska, H.1
Altmann, T.2
Arend, D.3
Arnaud, E.4
Chen, D.5
Cornut, G.6
Fiorani, F.7
Frohmberg, W.8
Junker, A.9
Klukas, C.10
|