메뉴 건너뛰기




Volumn 9, Issue 5, 2019, Pages

High-throughput field-phenotyping tools for plant breeding and precision agriculture

Author keywords

Decision support systems; Field phenotyping; Precision agriculture; Precision breeding

Indexed keywords


EID: 85066450619     PISSN: None     EISSN: 20734395     Source Type: Journal    
DOI: 10.3390/agronomy9050258     Document Type: Review
Times cited : (156)

References (95)
  • 1
    • 85019418822 scopus 로고    scopus 로고
    • Agriculture in 2050: Recalibrating targets for sustainable intensification
    • [CrossRef]
    • Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386-391. [CrossRef]
    • (2017) Bioscience , vol.67 , pp. 386-391
    • Hunter, M.C.1    Smith, R.G.2    Schipanski, M.E.3    Atwood, L.W.4    Mortensen, D.A.5
  • 2
    • 84883640524 scopus 로고    scopus 로고
    • The adaptation and mitigation potential of traditional agriculture in a changing climate
    • [CrossRef]
    • Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2013, 140, 33-45. [CrossRef]
    • (2013) Clim. Chang. , vol.140 , pp. 33-45
    • Altieri, M.A.1    Nicholls, C.I.2
  • 4
    • 40949130394 scopus 로고    scopus 로고
    • Marker-assisted selection: An approach for precision plant breeding in the twenty-first century
    • [CrossRef]
    • Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Boil. Sci. 2008, 363, 557-572. [CrossRef]
    • (2008) Philos. Trans. R. Soc. B Boil. Sci. , vol.363 , pp. 557-572
    • Collard, B.C.Y.1    MacKill, D.J.2
  • 5
    • 85049145900 scopus 로고    scopus 로고
    • Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat
    • [CrossRef]
    • Ghaffary, S.M.T.; Chawade, A.; Singh, P.K. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. Euphytica 2018, 214, 122. [CrossRef]
    • (2018) Euphytica , vol.214 , pp. 122
    • Ghaffary, S.M.T.1    Chawade, A.2    Singh, P.K.3
  • 6
    • 85018950575 scopus 로고    scopus 로고
    • New strategies and tools in quantitative genetics: How to go from the phenotype to the genotype
    • [CrossRef] [PubMed]
    • Bazakos, C.; Hanemian, M.; Trontin, C.; Jiménez-Gómez, J.M.; Loudet, O. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annu. Rev. Plant Biol. 2017, 68, 435-455. [CrossRef] [PubMed]
    • (2017) Annu. Rev. Plant Biol. , vol.68 , pp. 435-455
    • Bazakos, C.1    Hanemian, M.2    Trontin, C.3    Jiménez-Gómez, J.M.4    Loudet, O.5
  • 7
    • 84906943620 scopus 로고    scopus 로고
    • Genomic selection: Genome-wide prediction in plant improvement
    • [CrossRef]
    • Desta, Z.A.; Ortiz, R. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 2014, 19, 592-601. [CrossRef]
    • (2014) Trends Plant Sci. , vol.19 , pp. 592-601
    • Desta, Z.A.1    Ortiz, R.2
  • 9
    • 84891372805 scopus 로고    scopus 로고
    • Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis
    • [CrossRef]
    • Meijón, M.; Satbhai, S.B.; Tsuchimatsu, T.; Busch, W. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat. Genet. 2013, 46, 77-81. [CrossRef]
    • (2013) Nat. Genet. , vol.46 , pp. 77-81
    • Meijón, M.1    Satbhai, S.B.2    Tsuchimatsu, T.3    Busch, W.4
  • 12
  • 13
    • 84978922953 scopus 로고    scopus 로고
    • Plant disease detection by imaging sensors - Parallels and specific demands for precision agriculture and plant phenotyping
    • [CrossRef]
    • Mahlein, A.K. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241-251. [CrossRef]
    • (2016) Plant Dis. , vol.100 , pp. 241-251
    • Mahlein, A.K.1
  • 14
    • 85032751744 scopus 로고    scopus 로고
    • Image analysis: The new bottleneck in plant phenotyping [applications corner]
    • [CrossRef]
    • Minervini, M.; Scharr, H.; Tsaftaris, S.A. Image Analysis: The New Bottleneck in Plant Phenotyping [Applications Corner]. IEEE Signal Process. Mag. 2015, 32, 126-131. [CrossRef]
    • (2015) IEEE Signal Process. Mag. , vol.32 , pp. 126-131
    • Minervini, M.1    Scharr, H.2    Tsaftaris, S.A.3
  • 16
    • 0031433469 scopus 로고    scopus 로고
    • The sustainable intensification of agriculture
    • [CrossRef]
    • Pretty, J.N. The sustainable intensification of agriculture. Nat. Resour. Forum 1997, 21, 247-256. [CrossRef]
    • (1997) Nat. Resour. Forum , vol.21 , pp. 247-256
    • Pretty, J.N.1
  • 17
    • 2142743255 scopus 로고    scopus 로고
    • Nitrogen and the baltic sea: Managing nitrogen in relation to phosphorus
    • [CrossRef] [PubMed]
    • Elmgren, R.; Larsson, U. Nitrogen and the Baltic Sea: Managing nitrogen in relation to phosphorus. Sci.World J. 2001, 1, 371-377. [CrossRef] [PubMed]
    • (2001) Sci.World J. , vol.1 , pp. 371-377
    • Elmgren, R.1    Larsson, U.2
  • 18
    • 85016114538 scopus 로고    scopus 로고
    • Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region - A status
    • [CrossRef]
    • Heick, T.M.; Justesen, A.F.; Jørgensen, L.N. Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region - A status. Eur. J. Plant Pathol. 2017, 149, 669-682. [CrossRef]
    • (2017) Eur. J. Plant Pathol. , vol.149 , pp. 669-682
    • Heick, T.M.1    Justesen, A.F.2    Jørgensen, L.N.3
  • 19
    • 85042195411 scopus 로고    scopus 로고
    • Advances in variable rate technology application in potato in the netherlands
    • [CrossRef] [PubMed]
    • Kempenaar, C.; Been, T.; Booij, J.; van Evert, F.; Michielsen, J.-M.; Kocks, C. Advances in Variable Rate Technology Application in Potato in The Netherlands. Potato Res. 2018, 60, 295-305. [CrossRef] [PubMed]
    • (2018) Potato Res. , vol.60 , pp. 295-305
    • Kempenaar, C.1    Been, T.2    Booij, J.3    Van Evert, F.4    Michielsen, J.-M.5    Kocks, C.6
  • 20
    • 77954143049 scopus 로고    scopus 로고
    • Spectral signatures of sugar beet leaves for the detection and differentiation of diseases
    • [CrossRef]
    • Mahlein, A.K.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 2010, 11, 413-431. [CrossRef]
    • (2010) Precis. Agric. , vol.11 , pp. 413-431
    • Mahlein, A.K.1    Steiner, U.2    Dehne, H.W.3    Oerke, E.C.4
  • 22
    • 84994235616 scopus 로고    scopus 로고
    • Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
    • [CrossRef] [PubMed]
    • Rutkoski, J.; Poland, J.; Mondal, S.; Autrique, E.; Pérez, L.G.; Crossa, J.; Reynolds, M.; Singh, R. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3 Genes Genomes Genet. 2016, 6, 2799-2808. [CrossRef] [PubMed]
    • (2016) G3 Genes Genomes Genet. , vol.6 , pp. 2799-2808
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Pérez, L.G.5    Crossa, J.6    Reynolds, M.7    Singh, R.8
  • 23
    • 84984653696 scopus 로고    scopus 로고
    • A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding
    • [CrossRef]
    • Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Front. Plant Sci. 2016, 7, 1131. [CrossRef]
    • (2016) Front. Plant Sci. , vol.7 , pp. 1131
    • Tattaris, M.1    Reynolds, M.P.2    Chapman, S.C.3
  • 24
    • 85057795315 scopus 로고    scopus 로고
    • High resolution satellite imaging sensors for precision agriculture
    • [CrossRef]
    • Yang, C. High resolution satellite imaging sensors for precision agriculture. Front. Agric. Sci. Eng. 2018, 5, 393-405. [CrossRef]
    • (2018) Front. Agric. Sci. Eng. , vol.5 , pp. 393-405
    • Yang, C.1
  • 25
    • 0442298832 scopus 로고    scopus 로고
    • Remote sensing applications for precision agriculture: A learning community approach
    • [CrossRef]
    • Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157-169. [CrossRef]
    • (2003) Remote Sens. Environ. , vol.88 , pp. 157-169
    • Seelan, S.K.1    Laguette, S.2    Casady, G.M.3    Seielstad, G.A.4
  • 26
    • 85070786984 scopus 로고    scopus 로고
    • Digital soil mapping of arable land in Sweden - Validation of performance at multiple scales
    • [CrossRef]
    • Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden - Validation of performance at multiple scales. Geoderma 2017. [CrossRef]
    • (2017) Geoderma
    • Piikki, K.1    Söderström, M.2
  • 29
    • 85011310839 scopus 로고    scopus 로고
    • Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds
    • [CrossRef]
    • De Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218-2230. [CrossRef]
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 2218-2230
    • De Souza, C.H.W.1    Lamparelli, R.A.C.2    Rocha, J.V.3    Magalhães, P.S.G.4
  • 30
    • 44649115314 scopus 로고    scopus 로고
    • Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots
    • [CrossRef]
    • Lelong, C.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557-3585. [CrossRef]
    • (2008) Sensors , vol.8 , pp. 3557-3585
    • Lelong, C.1    Burger, P.2    Jubelin, G.3    Roux, B.4    Labbé, S.5    Baret, F.6
  • 31
    • 85119135186 scopus 로고    scopus 로고
    • Aerial images and convolutional neural network for cotton bloom detection
    • [CrossRef]
    • Xu, R.; Li, C.; Paterson, A.H.; Jiang, Y.; Sun, S.; Robertson, J.S. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection. Front. Plant Sci. 2018, 8, 2235. [CrossRef]
    • (2018) Front. Plant Sci. , vol.8 , pp. 2235
    • Xu, R.1    Li, C.2    Paterson, A.H.3    Jiang, Y.4    Sun, S.5    Robertson, J.S.6
  • 32
    • 85030838277 scopus 로고    scopus 로고
    • Uav-based thermal imaging for high-throughput field phenotyping of black poplar response to drought
    • [CrossRef] [PubMed]
    • Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [CrossRef] [PubMed]
    • (2017) Front. Plant Sci. , vol.8 , pp. 1681
    • Ludovisi, R.1    Tauro, F.2    Salvati, R.3    Khoury, S.4    Mugnozza Scarascia, G.5    Harfouche, A.6
  • 33
    • 85043775154 scopus 로고    scopus 로고
    • Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging
    • [CrossRef]
    • Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 2018, 14, 20. [CrossRef]
    • (2018) Plant Methods , vol.14 , pp. 20
    • Khan, Z.1    Rahimi-Eichi, V.2    Haefele, S.3    Garnett, T.4    Miklavcic, S.J.5
  • 34
    • 85021163000 scopus 로고    scopus 로고
    • Digital counts of maize plants by unmanned aerial vehicles (uavs)
    • [CrossRef]
    • Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sens. 2017, 9, 544. [CrossRef]
    • (2017) Remote Sens. , vol.9 , pp. 544
    • Gnädinger, F.1    Schmidhalter, U.2
  • 36
    • 84912137635 scopus 로고    scopus 로고
    • Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
    • [CrossRef]
    • Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335-10355. [CrossRef]
    • (2014) Remote Sens. , vol.6 , pp. 10335-10355
    • Geipel, J.1    Link, J.2    Claupein, W.3
  • 37
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • [CrossRef]
    • Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinform. 2015, 39, 79-87. [CrossRef]
    • (2015) Int. J. Appl. Earth Obs. Geoinform. , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8
  • 38
    • 84923012445 scopus 로고    scopus 로고
    • Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
    • [CrossRef]
    • Chapman, S.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.; Holland, E.; Zheng, B.; Ling, T.; Jimenez-Berni, J. Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy 2014, 4, 279-301. [CrossRef]
    • (2014) Agronomy , vol.4 , pp. 279-301
    • Chapman, S.1    Merz, T.2    Chan, A.3    Jackway, P.4    Hrabar, S.5    Dreccer, M.6    Holland, E.7    Zheng, B.8    Ling, T.9    Jimenez-Berni, J.10
  • 39
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • [CrossRef]
    • Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy 2014, 4, 349-379. [CrossRef]
    • (2014) Agronomy , vol.4 , pp. 349-379
    • Deery, D.1    Jimenez-Berni, J.2    Jones, H.3    Sirault, X.4    Furbank, R.5
  • 40
    • 0006835571 scopus 로고
    • The use of canopy temperature as an indicator of drought stress in humid regions
    • [CrossRef]
    • Keener, M.E.; Kircher, P.L. The use of canopy temperature as an indicator of drought stress in humid regions. Agric. Meteorol. 1983, 28, 339-349. [CrossRef]
    • (1983) Agric. Meteorol. , vol.28 , pp. 339-349
    • Keener, M.E.1    Kircher, P.L.2
  • 41
    • 85049242113 scopus 로고    scopus 로고
    • Specalyzer - An interactive online tool to analyze spectral reflectance measurements
    • [CrossRef] [PubMed]
    • Koc, A.; Henriksson, T.; Chawade, A. Specalyzer - An interactive online tool to analyze spectral reflectance measurements. PeerJ 2018, 6, e5031. [CrossRef] [PubMed]
    • (2018) PeerJ , vol.6 , pp. e5031
    • Koc, A.1    Henriksson, T.2    Chawade, A.3
  • 42
    • 85014875300 scopus 로고    scopus 로고
    • Assessing wheat traits by spectral reflectance: Dowe really need to focus on predicted trait-values or directly identify the elite genotypes group?
    • [CrossRef]
    • Garriga, M.; Romero-Bravo, S.; Estrada, F.; Escobar, A.; Matus, I.A.; del Pozo, A.; Astudillo, C.A.; Lobos, G.A. Assessing Wheat Traits by Spectral Reflectance: DoWe Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group? Front. Plant Sci. 2017, 8, 280. [CrossRef]
    • (2017) Front. Plant Sci. , vol.8 , pp. 280
    • Garriga, M.1    Romero-Bravo, S.2    Estrada, F.3    Escobar, A.4    Matus, I.A.5    Del Pozo, A.6    Astudillo, C.A.7    Lobos, G.A.8
  • 43
    • 35948985621 scopus 로고    scopus 로고
    • Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
    • [CrossRef]
    • Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187-197. [CrossRef]
    • (2007) Precis. Agric. , vol.8 , pp. 187-197
    • Huang, W.1    Lamb, D.W.2    Niu, Z.3    Zhang, Y.4    Liu, L.5    Wang, J.6
  • 44
    • 85047509282 scopus 로고    scopus 로고
    • Proximal phenotyping and machine learning methods to identify septoria tritici blotch disease symptoms in wheat
    • [CrossRef] [PubMed]
    • Odilbekov, F.; Armoniene, R.; Henriksson, T.; Chawade, A. Proximal Phenotyping and Machine Learning Methods to Identify Septoria Tritici Blotch Disease Symptoms in Wheat. Front. Plant Sci. 2018, 9, 685. [CrossRef] [PubMed]
    • (2018) Front. Plant Sci. , vol.9 , pp. 685
    • Odilbekov, F.1    Armoniene, R.2    Henriksson, T.3    Chawade, A.4
  • 45
    • 30344475483 scopus 로고    scopus 로고
    • Relationship between the normalized spad index and the nitrogen nutrition index: Application to durum wheat
    • [CrossRef]
    • Debaeke, P.; Rouet, P.; Justes, E. Relationship Between the Normalized SPAD Index and the Nitrogen Nutrition Index: Application to Durum Wheat. J. Plant Nutr. 2006, 29, 75-92. [CrossRef]
    • (2006) J. Plant Nutr. , vol.29 , pp. 75-92
    • Debaeke, P.1    Rouet, P.2    Justes, E.3
  • 46
    • 84892750944 scopus 로고    scopus 로고
    • Spad values and nitrogen nutrition index for the evaluation of rice nitrogen status
    • [CrossRef]
    • Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Prod. Sci. 2015, 17, 81-92. [CrossRef]
    • (2015) Plant Prod. Sci. , vol.17 , pp. 81-92
    • Yang, H.1    Yang, J.2    Lv, Y.3    He, J.4
  • 48
    • 84855510815 scopus 로고    scopus 로고
    • Development of a model system to identify differences in spring and winter oat
    • [CrossRef] [PubMed]
    • Chawade, A.; Linden, P.; Brautigam, M.; Jonsson, R.; Jonsson, A.; Moritz, T.; Olsson, O. Development of a model system to identify differences in spring and winter oat. PLoS ONE 2012, 7, e29792. [CrossRef] [PubMed]
    • (2012) PLoS ONE , vol.7 , pp. e29792
    • Chawade, A.1    Linden, P.2    Brautigam, M.3    Jonsson, R.4    Jonsson, A.5    Moritz, T.6    Olsson, O.7
  • 50
    • 84878754086 scopus 로고    scopus 로고
    • A flexible, low-cost cart for proximal sensing
    • [CrossRef]
    • White, J.W.; Conley, M.M. A Flexible, Low-Cost Cart for Proximal Sensing. Crop Sci. 2013, 53, 1646-1649. [CrossRef]
    • (2013) Crop Sci. , vol.53 , pp. 1646-1649
    • White, J.W.1    Conley, M.M.2
  • 51
    • 85046901712 scopus 로고    scopus 로고
    • Deploying a proximal sensing cart to identify drought-adaptive traits in upland cotton for high-throughput phenotyping
    • [CrossRef] [PubMed]
    • Thompson, A.L.; Thorp, K.R.; Conley, M.; Andrade-Sanchez, P.; Heun, J.T.; Dyer, J.M.; White, J.W. Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping. Front. Plant Sci. 2018, 9, 507. [CrossRef] [PubMed]
    • (2018) Front. Plant Sci. , vol.9 , pp. 507
    • Thompson, A.L.1    Thorp, K.R.2    Conley, M.3    Andrade-Sanchez, P.4    Heun, J.T.5    Dyer, J.M.6    White, J.W.7
  • 52
    • 84987933135 scopus 로고    scopus 로고
    • A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
    • [CrossRef]
    • Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 2016, 128, 181-192. [CrossRef]
    • (2016) Comput. Electron. Agric. , vol.128 , pp. 181-192
    • Bai, G.1    Ge, Y.2    Hussain, W.3    Baenziger, P.S.4    Graef, G.5
  • 53
    • 85034111095 scopus 로고    scopus 로고
    • High-throughput field phenotyping of leaves, leaf sheaths, culms and ears of spring barley cultivars at anthesis and dough ripeness
    • [CrossRef]
    • Barmeier, G.; Schmidhalter, U. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness. Front. Plant Sci. 2017, 8, 1920. [CrossRef]
    • (2017) Front. Plant Sci. , vol.8 , pp. 1920
    • Barmeier, G.1    Schmidhalter, U.2
  • 54
    • 84966339697 scopus 로고    scopus 로고
    • Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley
    • [CrossRef]
    • Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44-59. [CrossRef]
    • (2016) Eur. J. Agron. , vol.78 , pp. 44-59
    • Rischbeck, P.1    Elsayed, S.2    Mistele, B.3    Barmeier, G.4    Heil, K.5    Schmidhalter, U.6
  • 55
    • 84995528561 scopus 로고
    • High-throughput phenotyping of wheat and barley plants grown in single or few rows in small plots using active and passive spectral proximal sensing
    • [CrossRef]
    • Barmeier, G.; Schmidhalter, U. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing. Sensors 2016, 16, 1860. [CrossRef]
    • (1860) Sensors , vol.2016 , pp. 16
    • Barmeier, G.1    Schmidhalter, U.2
  • 58
    • 85040808600 scopus 로고    scopus 로고
    • Gphenovision: A ground mobile system with multi-modal imaging for field-based high throughput phenotyping of cotton
    • [CrossRef] [PubMed]
    • Jiang, Y.; Li, C.; Robertson, J.S.; Sun, S.; Xu, R.; Paterson, A.H. Gphenovision: A Ground Mobile System with Multi-modal Imaging for Field-Based High Throughput Phenotyping of Cotton. Sci. Rep. 2018, 8, 1213. [CrossRef] [PubMed]
    • (2018) Sci. Rep. , vol.8 , pp. 1213
    • Jiang, Y.1    Li, C.2    Robertson, J.S.3    Sun, S.4    Xu, R.5    Paterson, A.H.6
  • 61
    • 84935499866 scopus 로고    scopus 로고
    • Meeting global food needs: Realizing the potential via genetics × environment × management interactions
    • [CrossRef]
    • Hatfield, J.L.;Walthall, C.L. Meeting Global Food Needs: Realizing the Potential via Genetics × Environment × Management Interactions. Agron. J. 2015, 107, 1215-1226. [CrossRef]
    • (2015) Agron. J. , vol.107 , pp. 1215-1226
    • Hatfield, J.L.1    Walthall, C.L.2
  • 62
    • 85036524454 scopus 로고    scopus 로고
    • What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
    • [CrossRef]
    • Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2017, 39, 5345-5376. [CrossRef]
    • (2017) Int. J. Remote Sens. , vol.39 , pp. 5345-5376
    • Hunt, E.R.1    Daughtry, C.S.T.2
  • 63
    • 85043758936 scopus 로고    scopus 로고
    • Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding
    • [CrossRef]
    • Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Combining High-Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding. Plant Genome 2018, 11. [CrossRef]
    • (2018) Plant Genome , pp. 11
    • Crain, J.1    Mondal, S.2    Rutkoski, J.3    Singh, R.P.4    Poland, J.5
  • 66
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • [CrossRef]
    • Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110-124. [CrossRef]
    • (2016) Trends Plant Sci. , vol.21 , pp. 110-124
    • Singh, A.1    Ganapathysubramanian, B.2    Singh, A.K.3    Sarkar, S.4
  • 67
    • 85025090008 scopus 로고    scopus 로고
    • High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field
    • [CrossRef]
    • Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184-192. [CrossRef]
    • (2017) Curr. Opin. Plant Biol. , vol.38 , pp. 184-192
    • Shakoor, N.1    Lee, S.2    Mockler, T.C.3
  • 68
    • 85029412384 scopus 로고    scopus 로고
    • Comparison of visible imaging, thermography and spectrometry methods to evaluate the Effect of Heterodera schachtii inoculation on sugar beets
    • [CrossRef]
    • Joalland, S.; Screpanti, C.; Liebisch, F.; Varella, H.V.; Gaume, A.;Walter, A. Comparison of visible imaging, thermography and spectrometry methods to evaluate the Effect of Heterodera schachtii inoculation on sugar beets. Plant Methods 2017, 13, 73. [CrossRef]
    • (2017) Plant Methods , vol.13 , pp. 73
    • Joalland, S.1    Screpanti, C.2    Liebisch, F.3    Varella, H.V.4    Gaume, A.5    Walter, A.6
  • 70
    • 85043457085 scopus 로고    scopus 로고
    • Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors
    • [CrossRef]
    • Kuska, M.T.; Mahlein, A.K. Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. Eur. J. Plant Pathol. 2018, 152, 987-992. [CrossRef]
    • (2018) Eur. J. Plant Pathol. , vol.152 , pp. 987-992
    • Kuska, M.T.1    Mahlein, A.K.2
  • 72
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection
    • [CrossRef]
    • Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [CrossRef]
    • (2016) Front. Plant Sci. , vol.7 , pp. 1419
    • Mohanty, S.P.1    Hughes, D.P.2    Salathé, M.3
  • 73
    • 85053609099 scopus 로고    scopus 로고
    • Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming
    • [CrossRef]
    • Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.;Walter, A.; Siegwart, R. WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming. Remote Sens. 2018, 10, 1423. [CrossRef]
    • (2018) Remote Sens. , vol.10 , pp. 1423
    • Sa, I.1    Popović, M.2    Khanna, R.3    Chen, Z.4    Lottes, P.5    Liebisch, F.6    Nieto, J.7    Stachniss, C.8    Walter, A.9    Siegwart, R.10
  • 74
    • 0028082658 scopus 로고
    • Concepts of variable rate technology with considerations for fertilizer application
    • [CrossRef]
    • Sawyer, J.E. Concepts of Variable Rate Technology with Considerations for Fertilizer Application. J. Prod. Agric. 1994, 7, 195-201. [CrossRef]
    • (1994) J. Prod. Agric. , vol.7 , pp. 195-201
    • Sawyer, J.E.1
  • 75
    • 84925295161 scopus 로고    scopus 로고
    • Field testing of an automatic control system for variable rate fertilizer application
    • [CrossRef]
    • Reyes, J.F.; Esquivel, W.; Cifuentes, D.; Ortega, R. Field testing of an automatic control system for variable rate fertilizer application. Comput. Electron. Agric. 2015, 113, 260-265. [CrossRef]
    • (2015) Comput. Electron. Agric. , vol.113 , pp. 260-265
    • Reyes, J.F.1    Esquivel, W.2    Cifuentes, D.3    Ortega, R.4
  • 77
    • 0037327654 scopus 로고    scopus 로고
    • Early disease detection in wheat fields using spectral reflectance
    • [CrossRef]
    • Bravo, C.; Moshou, D.;West, J.; McCartney, A.; Ramon, H. Early Disease Detection in Wheat Fields using Spectral Reflectance. Biosyst. Eng. 2003, 84, 137-145. [CrossRef]
    • (2003) Biosyst. Eng. , vol.84 , pp. 137-145
    • Bravo, C.1    Moshou, D.2    West, J.3    McCartney, A.4    Ramon, H.5
  • 78
    • 85052638924 scopus 로고    scopus 로고
    • Using support vector machines classification to differentiate spectral signatures of potato plants infected with potato virus y
    • [CrossRef]
    • Griffel, L.M.; Delparte, D.; Edwards, J. Using Support Vector Machines classification to differentiate spectral signatures of potato plants infected with Potato Virus Y. Comput. Electron. Agric. 2018, 153, 318-324. [CrossRef]
    • (2018) Comput. Electron. Agric. , vol.153 , pp. 318-324
    • Griffel, L.M.1    Delparte, D.2    Edwards, J.3
  • 79
    • 84968862680 scopus 로고    scopus 로고
    • Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle
    • [CrossRef]
    • Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering 2016, 148, 1-10. [CrossRef]
    • (2016) Biosystems Engineering , vol.148 , pp. 1-10
    • Sugiura, R.1    Tsuda, S.2    Tamiya, S.3    Itoh, A.4    Nishiwaki, K.5    Murakami, N.6    Shibuya, Y.7    Hirafuji, M.8    Nuske, S.9
  • 80
    • 85061357547 scopus 로고    scopus 로고
    • Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato
    • [CrossRef]
    • Franceschini, M.H.D.; Bartholomeus, H.; van Apeldoorn, D.F.; Suomalainen, J.; Kooistra, L. Feasibility of Unmanned Aerial Vehicle Optical Imagery for Early Detection and Severity Assessment of Late Blight in Potato. Remote Sens. 2019, 11, 224. [CrossRef]
    • (2019) Remote Sens. , vol.11 , pp. 224
    • Franceschini, M.H.D.1    Bartholomeus, H.2    Van Apeldoorn, D.F.3    Suomalainen, J.4    Kooistra, L.5
  • 81
    • 1642344752 scopus 로고    scopus 로고
    • Safeguarding production - Losses in major crops and the role of crop protection
    • [CrossRef]
    • Oerke, E.C.; Dehne, H.W. Safeguarding production - Losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275-285. [CrossRef]
    • (2004) Crop Prot. , vol.23 , pp. 275-285
    • Oerke, E.C.1    Dehne, H.W.2
  • 82
    • 84875033328 scopus 로고    scopus 로고
    • Recent weed control, weed management, and integrated weed management
    • [CrossRef]
    • Harker, K.N.; O'Donovan, J.T. Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technol. 2017, 27, 1-11. [CrossRef]
    • (2017) Weed Technol. , vol.27 , pp. 1-11
    • Harker, K.N.1    O'Donovan, J.T.2
  • 83
    • 85046034633 scopus 로고    scopus 로고
    • A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
    • [CrossRef]
    • Gonzalez-Andujar, J.L.; Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302. [CrossRef]
    • (2018) PLoS ONE , vol.13 , pp. e0196302
    • Gonzalez-Andujar, J.L.1    Huang, H.2    Deng, J.3    Lan, Y.4    Yang, A.5    Deng, X.6    Zhang, L.7
  • 84
    • 84928668178 scopus 로고    scopus 로고
    • Quantifying efficacy and limits of unmanned aerial vehicle (uav) technology forweed seedling detection as affected by sensor resolution
    • [CrossRef] [PubMed]
    • Peña, J.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.; López-Granados, F. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology forWeed Seedling Detection as affected by Sensor Resolution. Sensors 2015, 15, 5609-5626. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 5609-5626
    • Peña, J.1    Torres-Sánchez, J.2    Serrano-Pérez, A.3    De Castro, A.4    López-Granados, F.5
  • 89
    • 84939963388 scopus 로고    scopus 로고
    • Potatoes for sustainable global food security
    • [CrossRef]
    • Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185-199. [CrossRef]
    • (2014) Potato Res. , vol.57 , pp. 185-199
    • Devaux, A.1    Kromann, P.2    Ortiz, O.3
  • 90
    • 84992692293 scopus 로고    scopus 로고
    • Overview and breeding strategies of table potato production in Sweden and the fennoscandian region
    • [CrossRef]
    • Eriksson, D.; Carlson-Nilsson, U.; Ortíz, R.; Andreasson, E. Overview and Breeding Strategies of Table Potato Production in Sweden and the Fennoscandian Region. Potato Res. 2016, 59, 279-294. [CrossRef]
    • (2016) Potato Res. , vol.59 , pp. 279-294
    • Eriksson, D.1    Carlson-Nilsson, U.2    Ortíz, R.3    Andreasson, E.4
  • 91
    • 85020000023 scopus 로고    scopus 로고
    • Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia
    • [CrossRef]
    • Gijzen, M.; Lehsten, V.;Wiik, L.; Hannukkala, A.; Andreasson, E.; Chen, D.; Ou, T.; Liljeroth, E.; Lankinen, Å.; Grenville-Briggs, L. Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE 2017, 12, e0177580. [CrossRef]
    • (2017) PLoS ONE , vol.12 , pp. e0177580
    • Gijzen, M.1    Lehsten, V.2    Wiik, L.3    Hannukkala, A.4    Andreasson, E.5    Chen, D.6    Ou, T.7    Liljeroth, E.8    Lankinen, Å.9    Grenville-Briggs, L.10
  • 92
    • 0000910453 scopus 로고
    • Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering
    • [CrossRef]
    • Fry, W.E. Evaluation of Potato Late Blight Forecasts Modified to Incorporate Host Resistance and Fungicide Weathering. Phytopathology 1983, 73, 1054-1059. [CrossRef]
    • (1983) Phytopathology , vol.73 , pp. 1054-1059
    • Fry, W.E.1
  • 93
    • 85066428125 scopus 로고    scopus 로고
    • The possibilities and challenges of UAV-borne remote sensing for detection of potato late blight in the field
    • Department of Plant and Environmental Sciences, University of Copenhagen: Copenhagen, Denmark
    • Alexandersson, E.; Antkowiak, P.; Holmberg, M.; Piikki, K.; Söderström, M.; Liljeroth, E. The possibilities and challenges of UAV-borne remote sensing for detection of potato late blight in the field. In Abstract Book for the Plant Biology Europe Conference in Copenhagen; Department of Plant and Environmental Sciences, University of Copenhagen: Copenhagen, Denmark, 2018; p. 10, ISBN 978-87-996274-1-7.
    • (2018) Abstract Book for the Plant Biology Europe Conference in Copenhagen , pp. 10
    • Alexandersson, E.1    Antkowiak, P.2    Holmberg, M.3    Piikki, K.4    Söderström, M.5    Liljeroth, E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.