메뉴 건너뛰기




Volumn 3, Issue 4, 2017, Pages 563-575

An Introduction to Deep Learning for the Physical Layer

Author keywords

cognitive radio; deep learning; digital communications; Machine learning; modulation; physical layer; radio communication

Indexed keywords

COGNITIVE RADIO; DIGITAL COMMUNICATION SYSTEMS; DIGITAL RADIO; ELECTRIC TRANSFORMERS; LEARNING SYSTEMS; MODULATION; NETWORK LAYERS; NEURAL NETWORKS; RADIO COMMUNICATION; RADIO TRANSMISSION; TRANSMITTERS;

EID: 85065897925     PISSN: None     EISSN: 23327731     Source Type: Journal    
DOI: 10.1109/TCCN.2017.2758370     Document Type: Conference Paper
Times cited : (2564)

References (66)
  • 6
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • Amsterdam, The Netherlands: North-Holland
    • Y. LeCun, "Generalization and network design strategies," in Connectionism in Perspective. Amsterdam, The Netherlands: North-Holland, 1989, pp. 143-155.
    • (1989) Connectionism in Perspective , pp. 143-155
    • LeCun, Y.1
  • 7
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • Santiago, Chile
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015, pp. 1026-1034.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 8
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe, "Object recognition from local scale-invariant features," in Proc. IEEE Int. Conf. Comput. Vis., 1999, pp. 1150-1157.
    • (1999) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1150-1157
    • Lowe, D.G.1
  • 9
    • 0000679216 scopus 로고
    • Distributional structure
    • Z. S. Harris, "Distributional structure," Word, vol. 10, nos. 2-3, pp. 146-162, 1954.
    • (1954) Word , vol.10 , Issue.2-3 , pp. 146-162
    • Harris, Z.S.1
  • 10
    • 0029193869 scopus 로고
    • Joint source/channel coding for wireless channels
    • Chicago, IL, USA
    • A. Goldsmith, "Joint source/channel coding for wireless channels," in Proc. IEEE Veh. Technol. Conf., vol. 2. Chicago, IL, USA, 1995, pp. 614-618.
    • (1995) Proc. IEEE Veh. Technol. Conf. , vol.2 , pp. 614-618
    • Goldsmith, A.1
  • 11
    • 0026867885 scopus 로고
    • 8-PSK trellis codes for a Rayleigh channel
    • May
    • E. Zehavi, "8-PSK trellis codes for a Rayleigh channel," IEEE Trans. Commun., vol. 40, no. 5, pp. 873-884, May 1992.
    • (1992) IEEE Trans. Commun. , vol.40 , Issue.5 , pp. 873-884
    • Zehavi, E.1
  • 12
    • 38849139924 scopus 로고    scopus 로고
    • Cambridge, U.K.: Cambridge Univ. Press
    • H. Wymeersch, Iterative Receiver Design, vol. 234. Cambridge, U.K.: Cambridge Univ. Press, 2007.
    • (2007) Iterative Receiver Design , vol.234
    • Wymeersch, H.1
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 84995478886 scopus 로고    scopus 로고
    • Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
    • Jan
    • Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017.
    • (2017) IEEE J. Solid-State Circuits , vol.52 , Issue.1 , pp. 127-138
    • Chen, Y.-H.1    Krishna, T.2    Emer, J.S.3    Sze, V.4
  • 18
    • 70049092228 scopus 로고    scopus 로고
    • Large-scale deep unsupervised learning using graphics processors
    • Montreal, QC, Canada
    • R. Raina, A. Madhavan, and A. Y. Ng, "Large-scale deep unsupervised learning using graphics processors," in Proc. Int. Conf. Mach. Learn. (ICML), Montreal, QC, Canada, 2009, pp. 873-880.
    • (2009) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 873-880
    • Raina, R.1    Madhavan, A.2    Ng, A.Y.3
  • 19
    • 0034225524 scopus 로고    scopus 로고
    • Applications of neural networks to digital communications-A survey
    • M. Ibnkahla, "Applications of neural networks to digital communications-A survey," Elsevier Signal Process., vol. 80, no. 7, pp. 1185-1215, 2000.
    • (2000) Elsevier Signal Process. , vol.80 , Issue.7 , pp. 1185-1215
    • Ibnkahla, M.1
  • 20
    • 84881317360 scopus 로고    scopus 로고
    • A survey on machine-learning techniques in cognitive radios
    • 3rd Quart.
    • M. Bkassiny, Y. Li, and S. K. Jayaweera, "A survey on machine-learning techniques in cognitive radios," IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1136-1159, 3rd Quart., 2013.
    • (2013) IEEE Commun. Surveys Tuts. , vol.15 , Issue.3 , pp. 1136-1159
    • Bkassiny, M.1    Li, Y.2    Jayaweera, S.K.3
  • 21
    • 84959854459 scopus 로고    scopus 로고
    • Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence
    • M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi, "Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence," IEEE Access, vol. 3, pp. 1512-1530, 2015.
    • (2015) IEEE Access , vol.3 , pp. 1512-1530
    • Zorzi, M.1    Zanella, A.2    Testolin, A.3    De Grazia, M.D.F.4    Zorzi, M.5
  • 27
    • 85028346790 scopus 로고    scopus 로고
    • Blind detection for MIMO systems with low-resolution ADCs using supervised learning
    • Paris, France
    • Y.-S. Jeon, S.-N. Hong, and N. Lee, "Blind detection for MIMO systems with low-resolution ADCs using supervised learning," in Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, 2017, pp. 1-6.
    • (2017) Proc. IEEE Int. Conf. Commun. (ICC) , pp. 1-6
    • Jeon, Y.-S.1    Hong, S.-N.2    Lee, N.3
  • 30
    • 85017576112 scopus 로고    scopus 로고
    • Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention
    • Limassol, Cyprus
    • T. J. O'Shea, K. Karra, and T. C. Clancy, "Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention," in Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Limassol, Cyprus, 2016, pp. 223-228.
    • (2016) Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT) , pp. 223-228
    • O'Shea, T.J.1    Karra, K.2    Clancy, T.C.3
  • 37
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Haifa, Israel
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn. (ICML), Haifa, Israel, 2010, pp. 807-814.
    • (2010) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 38
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Orlando, FL, USA
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014, pp. 675-678.
    • (2014) Proc. 22nd ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1
  • 43
    • 84971640658 scopus 로고    scopus 로고
    • F. Chollet. (2015). Keras. [Online]. Available: https://github.com/fchollet/keras
    • (2015) Keras
    • Chollet, F.1
  • 44
  • 45
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 46
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • San Diego, CA, USA
    • D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015, pp. 1-15.
    • (2015) Proc. Int. Conf. Learn. Represent. (ICLR) , pp. 1-15
    • Kingma, D.P.1    Ba, J.2
  • 47
    • 84928534967 scopus 로고    scopus 로고
    • Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
    • Montreal, QC, Canada
    • Y. N. Dauphin et al., "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 2933-2941.
    • (2014) Proc. Adv. Neural Inf. Process. Syst. (NIPS) , pp. 2933-2941
    • Dauphin, Y.N.1
  • 48
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov
    • L. V. D. Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten, L.V.D.1    Hinton, G.2
  • 52
    • 85030141284 scopus 로고    scopus 로고
    • Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems
    • Düsseldorf, Germany
    • J. Estaran et al., "Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems," in Proc. 42nd Eur. Conf. Opt. Commun. (ECOC), Düsseldorf, Germany, 2016, pp. 1-3.
    • (2016) Proc. 42nd Eur. Conf. Opt. Commun. (ECOC) , pp. 1-3
    • Estaran, J.1
  • 53
    • 0032045669 scopus 로고    scopus 로고
    • Algorithms for automatic modulation recognition of communication signals
    • Apr
    • A. K. Nandi and E. E. Azzouz, "Algorithms for automatic modulation recognition of communication signals," IEEE Trans. Commun., vol. 46, no. 4, pp. 431-436, Apr. 1998.
    • (1998) IEEE Trans. Commun. , vol.46 , Issue.4 , pp. 431-436
    • Nandi, A.K.1    Azzouz, E.E.2
  • 55
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • San Diego, CA, USA
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015.
    • (2015) Proc. Int. Conf. Learn. Represent. (ICLR)
    • Simonyan, K.1    Zisserman, A.2
  • 56
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Feb
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Feb. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 57
    • 84988019200 scopus 로고    scopus 로고
    • Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers
    • Dec
    • A. Abdelmutalab, K. Assaleh, and M. El-Tarhuni, "Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers," Phys. Commun., vol. 21, pp. 10-18, Dec. 2016.
    • (2016) Phys. Commun. , vol.21 , pp. 10-18
    • Abdelmutalab, A.1    Assaleh, K.2    El-Tarhuni, M.3
  • 59
    • 84989338543 scopus 로고    scopus 로고
    • Gradient-based hyperparameter optimization through reversible learning
    • Lille, France
    • D. Maclaurin, D. Duvenaud, and R. P. Adams, "Gradient-based hyperparameter optimization through reversible learning," in Proc. 32nd Int. Conf. Mach. Learn. (ICML), Lille, France, 2015, pp. 2113-2122.
    • (2015) Proc. 32nd Int. Conf. Mach. Learn. (ICML) , pp. 2113-2122
    • Maclaurin, D.1    Duvenaud, D.2    Adams, R.P.3
  • 60
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Jan
    • J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, pp. 281-305, Jan. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 62
    • 81855172050 scopus 로고    scopus 로고
    • Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks
    • Shanghai, China
    • M. F. Amin, M. I. Amin, A. Y. H. Al-Nuaimi, and K. Murase, "Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks," in Proc. Int. Conf. Neural Inf. Process., Shanghai, China, 2011, pp. 550-559.
    • (2011) Proc. Int. Conf. Neural Inf. Process. , pp. 550-559
    • Amin, M.F.1    Amin, M.I.2    Al-Nuaimi, A.Y.H.3    Murase, K.4
  • 64
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.