-
3
-
-
0003634013
-
-
New York, NY, USA: Wiley
-
H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing. New York, NY, USA: Wiley, 1998.
-
(1998)
Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing
-
-
Meyr, H.1
Moeneclaey, M.2
Fechtel, S.A.3
-
6
-
-
0002291365
-
Generalization and network design strategies
-
Amsterdam, The Netherlands: North-Holland
-
Y. LeCun, "Generalization and network design strategies," in Connectionism in Perspective. Amsterdam, The Netherlands: North-Holland, 1989, pp. 143-155.
-
(1989)
Connectionism in Perspective
, pp. 143-155
-
-
LeCun, Y.1
-
7
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
Santiago, Chile
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015, pp. 1026-1034.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
8
-
-
0033284915
-
Object recognition from local scale-invariant features
-
D. G. Lowe, "Object recognition from local scale-invariant features," in Proc. IEEE Int. Conf. Comput. Vis., 1999, pp. 1150-1157.
-
(1999)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1150-1157
-
-
Lowe, D.G.1
-
9
-
-
0000679216
-
Distributional structure
-
Z. S. Harris, "Distributional structure," Word, vol. 10, nos. 2-3, pp. 146-162, 1954.
-
(1954)
Word
, vol.10
, Issue.2-3
, pp. 146-162
-
-
Harris, Z.S.1
-
10
-
-
0029193869
-
Joint source/channel coding for wireless channels
-
Chicago, IL, USA
-
A. Goldsmith, "Joint source/channel coding for wireless channels," in Proc. IEEE Veh. Technol. Conf., vol. 2. Chicago, IL, USA, 1995, pp. 614-618.
-
(1995)
Proc. IEEE Veh. Technol. Conf.
, vol.2
, pp. 614-618
-
-
Goldsmith, A.1
-
11
-
-
0026867885
-
8-PSK trellis codes for a Rayleigh channel
-
May
-
E. Zehavi, "8-PSK trellis codes for a Rayleigh channel," IEEE Trans. Commun., vol. 40, no. 5, pp. 873-884, May 1992.
-
(1992)
IEEE Trans. Commun.
, vol.40
, Issue.5
, pp. 873-884
-
-
Zehavi, E.1
-
12
-
-
38849139924
-
-
Cambridge, U.K.: Cambridge Univ. Press
-
H. Wymeersch, Iterative Receiver Design, vol. 234. Cambridge, U.K.: Cambridge Univ. Press, 2007.
-
(2007)
Iterative Receiver Design
, vol.234
-
-
Wymeersch, H.1
-
13
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
15
-
-
0026972451
-
On the computational power of neural nets
-
Pittsburgh, PA, USA
-
H. T. Siegelmann and E. D. Sontag, "On the computational power of neural nets," in Proc. 5th Annu. Workshop Comput. Learn. Theory, Pittsburgh, PA, USA, 1992, pp. 440-449.
-
(1992)
Proc. 5th Annu. Workshop Comput. Learn. Theory
, pp. 440-449
-
-
Siegelmann, H.T.1
Sontag, E.D.2
-
16
-
-
84867754966
-
Improving the speed of neural networks on CPUs
-
V. Vanhoucke, A. Senior, and M. Z. Mao, "Improving the speed of neural networks on CPUs," in Proc. Deep Learn. Unsupervised Feature Learn. NIPS Workshop, vol. 1. 2011, p. 4.
-
(2011)
Proc. Deep Learn. Unsupervised Feature Learn. NIPS Workshop
, vol.1
, pp. 4
-
-
Vanhoucke, V.1
Senior, A.2
Mao, M.Z.3
-
17
-
-
84995478886
-
Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
-
Jan
-
Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017.
-
(2017)
IEEE J. Solid-State Circuits
, vol.52
, Issue.1
, pp. 127-138
-
-
Chen, Y.-H.1
Krishna, T.2
Emer, J.S.3
Sze, V.4
-
18
-
-
70049092228
-
Large-scale deep unsupervised learning using graphics processors
-
Montreal, QC, Canada
-
R. Raina, A. Madhavan, and A. Y. Ng, "Large-scale deep unsupervised learning using graphics processors," in Proc. Int. Conf. Mach. Learn. (ICML), Montreal, QC, Canada, 2009, pp. 873-880.
-
(2009)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 873-880
-
-
Raina, R.1
Madhavan, A.2
Ng, A.Y.3
-
19
-
-
0034225524
-
Applications of neural networks to digital communications-A survey
-
M. Ibnkahla, "Applications of neural networks to digital communications-A survey," Elsevier Signal Process., vol. 80, no. 7, pp. 1185-1215, 2000.
-
(2000)
Elsevier Signal Process.
, vol.80
, Issue.7
, pp. 1185-1215
-
-
Ibnkahla, M.1
-
20
-
-
84881317360
-
A survey on machine-learning techniques in cognitive radios
-
3rd Quart.
-
M. Bkassiny, Y. Li, and S. K. Jayaweera, "A survey on machine-learning techniques in cognitive radios," IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1136-1159, 3rd Quart., 2013.
-
(2013)
IEEE Commun. Surveys Tuts.
, vol.15
, Issue.3
, pp. 1136-1159
-
-
Bkassiny, M.1
Li, Y.2
Jayaweera, S.K.3
-
21
-
-
84959854459
-
Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence
-
M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi, "Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence," IEEE Access, vol. 3, pp. 1512-1530, 2015.
-
(2015)
IEEE Access
, vol.3
, pp. 1512-1530
-
-
Zorzi, M.1
Zanella, A.2
Testolin, A.3
De Grazia, M.D.F.4
Zorzi, M.5
-
22
-
-
85015194370
-
Learning to decode linear codes using deep learning
-
Monticello, IL, USA
-
E. Nachmani, Y. Be'ery, and D. Burshtein, "Learning to decode linear codes using deep learning," in Proc. IEEE Annu. Allerton Conf. Commun. Control Comput. (Allerton), Monticello, IL, USA, 2016, pp. 341-346.
-
(2016)
Proc. IEEE Annu. Allerton Conf. Commun. Control Comput. (Allerton)
, pp. 341-346
-
-
Nachmani, E.1
Be'Ery, Y.2
Burshtein, D.3
-
23
-
-
85040194624
-
-
arXiv preprint arXiv:1702.07560
-
E. Nachmani, E. Marciano, D. Burshtein, and Y. Be'ery, "RNN decoding of linear block codes," arXiv preprint arXiv:1702.07560, 2017.
-
(2017)
RNN Decoding of Linear Block Codes
-
-
Nachmani, E.1
Marciano, E.2
Burshtein, D.3
Be'Ery, Y.4
-
26
-
-
85019234925
-
Onsager-corrected deep learning for sparse linear inverse problems
-
Washington, DC, USA
-
M. Borgerding and P. Schniter, "Onsager-corrected deep learning for sparse linear inverse problems," in Proc. IEEE Glob. Conf. Signal Inf. Process. (GlobalSIP), Washington, DC, USA, 2016, pp. 227-231.
-
(2016)
Proc. IEEE Glob. Conf. Signal Inf. Process. (GlobalSIP)
, pp. 227-231
-
-
Borgerding, M.1
Schniter, P.2
-
27
-
-
85028346790
-
Blind detection for MIMO systems with low-resolution ADCs using supervised learning
-
Paris, France
-
Y.-S. Jeon, S.-N. Hong, and N. Lee, "Blind detection for MIMO systems with low-resolution ADCs using supervised learning," in Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, 2017, pp. 1-6.
-
(2017)
Proc. IEEE Int. Conf. Commun. (ICC)
, pp. 1-6
-
-
Jeon, Y.-S.1
Hong, S.-N.2
Lee, N.3
-
30
-
-
85017576112
-
Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention
-
Limassol, Cyprus
-
T. J. O'Shea, K. Karra, and T. C. Clancy, "Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention," in Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Limassol, Cyprus, 2016, pp. 223-228.
-
(2016)
Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT)
, pp. 223-228
-
-
O'Shea, T.J.1
Karra, K.2
Clancy, T.C.3
-
31
-
-
84984860954
-
Convolutional radio modulation recognition networks
-
Aberdeen, U.K.
-
T. J. O'Shea, J. Corgan, and T. C. Clancy, "Convolutional radio modulation recognition networks," in Proc. Int. Conf. Eng. Appl. Neural Netw., Aberdeen, U.K., 2016, pp. 213-226.
-
(2016)
Proc. Int. Conf. Eng. Appl. Neural Netw.
, pp. 213-226
-
-
O'Shea, T.J.1
Corgan, J.2
Clancy, T.C.3
-
32
-
-
84992215211
-
Unsupervised representation learning of structured radio communication signals
-
Aalborg, Denmark
-
T. J. O'Shea, J. Corgan, and T. C. Clancy, "Unsupervised representation learning of structured radio communication signals," in Proc. IEEE Int. Workshop Sens. Process. Learn. Intell. Mach. (SPLINE), Aalborg, Denmark, 2016, pp. 1-5.
-
(2016)
Proc. IEEE Int. Workshop Sens. Process. Learn. Intell. Mach. (SPLINE)
, pp. 1-5
-
-
O'Shea, T.J.1
Corgan, J.2
Clancy, T.C.3
-
33
-
-
85020170773
-
On deep learningbased channel decoding
-
Baltimore, MD, USA
-
T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, "On deep learningbased channel decoding," in Proc. IEEE 51st Annu. Conf. Inf. Sci. Syst. (CISS), Baltimore, MD, USA, 2017, pp. 1-6.
-
(2017)
Proc. IEEE 51st Annu. Conf. Inf. Sci. Syst. (CISS)
, pp. 1-6
-
-
Gruber, T.1
Cammerer, S.2
Hoydis, J.3
Brink, S.T.4
-
34
-
-
85040167810
-
-
arXiv preprint arXiv:1702.06901
-
S. Cammerer, T. Gruber, J. Hoydis, and S. T. Brink, "Scaling deep learning-based decoding of polar codes via partitioning," arXiv preprint arXiv:1702.06901, 2017.
-
(2017)
Scaling Deep Learning-based Decoding of Polar Codes Via Partitioning
-
-
Cammerer, S.1
Gruber, T.2
Hoydis, J.3
Brink, S.T.4
-
35
-
-
84944735469
-
-
Cambridge, MA, USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
36
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
Haifa, Israel
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn. (ICML), Haifa, Israel, 2010, pp. 807-814.
-
(2010)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
38
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Orlando, FL, USA
-
Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014, pp. 675-678.
-
(2014)
Proc. 22nd ACM Int. Conf. Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
42
-
-
84888340666
-
Torch7: A MATLABlike environment for machine learning
-
R. Collobert, K. Kavukcuoglu, and C. Farabet, "Torch7: A MATLABlike environment for machine learning," in Proc. BigLearn NIPS Workshop, 2011, pp. 1-6.
-
(2011)
Proc. BigLearn NIPS Workshop
, pp. 1-6
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
43
-
-
84971640658
-
-
F. Chollet. (2015). Keras. [Online]. Available: https://github.com/fchollet/keras
-
(2015)
Keras
-
-
Chollet, F.1
-
45
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
46
-
-
85083951076
-
Adam: A method for stochastic optimization
-
San Diego, CA, USA
-
D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015, pp. 1-15.
-
(2015)
Proc. Int. Conf. Learn. Represent. (ICLR)
, pp. 1-15
-
-
Kingma, D.P.1
Ba, J.2
-
47
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Montreal, QC, Canada
-
Y. N. Dauphin et al., "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 2933-2941.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 2933-2941
-
-
Dauphin, Y.N.1
-
48
-
-
57249084011
-
Visualizing data using t-SNE
-
Nov
-
L. V. D. Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2579-2605
-
-
Maaten, L.V.D.1
Hinton, G.2
-
51
-
-
84965096967
-
Spatial transformer networks
-
M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, "Spatial transformer networks," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015, pp. 2017-2025.
-
(2015)
Proc. Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 2017-2025
-
-
Jaderberg, M.1
Simonyan, K.2
Zisserman, A.3
Kavukcuoglu, K.4
-
52
-
-
85030141284
-
Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems
-
Düsseldorf, Germany
-
J. Estaran et al., "Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems," in Proc. 42nd Eur. Conf. Opt. Commun. (ECOC), Düsseldorf, Germany, 2016, pp. 1-3.
-
(2016)
Proc. 42nd Eur. Conf. Opt. Commun. (ECOC)
, pp. 1-3
-
-
Estaran, J.1
-
53
-
-
0032045669
-
Algorithms for automatic modulation recognition of communication signals
-
Apr
-
A. K. Nandi and E. E. Azzouz, "Algorithms for automatic modulation recognition of communication signals," IEEE Trans. Commun., vol. 46, no. 4, pp. 431-436, Apr. 1998.
-
(1998)
IEEE Trans. Commun.
, vol.46
, Issue.4
, pp. 431-436
-
-
Nandi, A.K.1
Azzouz, E.E.2
-
54
-
-
33749041249
-
A new approach to signal classification using spectral correlation and neural networks
-
Baltimore, MD, USA
-
A. Fehske, J. Gaeddert, and J. H. Reed, "A new approach to signal classification using spectral correlation and neural networks," in Proc. IEEE Int. Symp. New Front. Dyn. Spectr. Access Netw. (DYSPAN), Baltimore, MD, USA, 2005, pp. 144-150.
-
(2005)
Proc. IEEE Int. Symp. New Front. Dyn. Spectr. Access Netw. (DYSPAN)
, pp. 144-150
-
-
Fehske, A.1
Gaeddert, J.2
Reed, J.H.3
-
55
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
San Diego, CA, USA
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015.
-
(2015)
Proc. Int. Conf. Learn. Represent. (ICLR)
-
-
Simonyan, K.1
Zisserman, A.2
-
56
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Feb
-
F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Feb. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
57
-
-
84988019200
-
Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers
-
Dec
-
A. Abdelmutalab, K. Assaleh, and M. El-Tarhuni, "Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers," Phys. Commun., vol. 21, pp. 10-18, Dec. 2016.
-
(2016)
Phys. Commun.
, vol.21
, pp. 10-18
-
-
Abdelmutalab, A.1
Assaleh, K.2
El-Tarhuni, M.3
-
59
-
-
84989338543
-
Gradient-based hyperparameter optimization through reversible learning
-
Lille, France
-
D. Maclaurin, D. Duvenaud, and R. P. Adams, "Gradient-based hyperparameter optimization through reversible learning," in Proc. 32nd Int. Conf. Mach. Learn. (ICML), Lille, France, 2015, pp. 2113-2122.
-
(2015)
Proc. 32nd Int. Conf. Mach. Learn. (ICML)
, pp. 2113-2122
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
60
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Jan
-
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, pp. 281-305, Jan. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
62
-
-
81855172050
-
Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks
-
Shanghai, China
-
M. F. Amin, M. I. Amin, A. Y. H. Al-Nuaimi, and K. Murase, "Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks," in Proc. Int. Conf. Neural Inf. Process., Shanghai, China, 2011, pp. 550-559.
-
(2011)
Proc. Int. Conf. Neural Inf. Process.
, pp. 550-559
-
-
Amin, M.F.1
Amin, M.I.2
Al-Nuaimi, A.Y.H.3
Murase, K.4
-
64
-
-
77956031473
-
A survey on transfer learning
-
Oct
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
65
-
-
84995807057
-
Capturing the human figure through a wall
-
F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, "Capturing the human figure through a wall," ACM Trans. Graph., vol. 34, no. 6, p. 219, 2015.
-
(2015)
ACM Trans. Graph.
, vol.34
, Issue.6
, pp. 219
-
-
Adib, F.1
Hsu, C.-Y.2
Mao, H.3
Katabi, D.4
Durand, F.5
-
66
-
-
84994165777
-
Emotion recognition using wireless signals
-
New York, NY, USA
-
M. Zhao, F. Adib, and D. Katabi, "Emotion recognition using wireless signals," in Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., New York, NY, USA, 2016, pp. 95-108.
-
(2016)
Proc. ACM Annu. Int. Conf. Mobile Comput. Netw.
, pp. 95-108
-
-
Zhao, M.1
Adib, F.2
Katabi, D.3
|