메뉴 건너뛰기




Volumn 83, Issue 9, 2004, Pages 957-970

Triple solutions for a nonlocal functional boundary value problem by leggett–williams theorem

Author keywords

1991 Mathematics Subject Classification: 34K10; Boundary value problems; Functional differential equation; Leggett Williams fixed point theorem; Positive solutions

Indexed keywords


EID: 85064777573     PISSN: 15226514     EISSN: 15497879     Source Type: Journal    
DOI: 10.1080/00036810410001724571     Document Type: Article
Times cited : (11)

References (33)
  • 2
    • 0039248253 scopus 로고    scopus 로고
    • Triple solutions to boundary value problems on time scales
    • Agarwal, RP, and O'Regan, D. 2000. Triple solutions to boundary value problems on time scales. Appl. Math. Lett., 13: 7–11.
    • (2000) Appl. Math. Lett. , vol.13 , pp. 7-11
    • Agarwal, R.P.1    O'Regan, D.2
  • 3
    • 0037084478 scopus 로고    scopus 로고
    • Eigenvalues and the one dimensional p-Laplacian
    • Agarwal, RP, Lu, H, and O'Regan, D. 2002. Eigenvalues and the one dimensional p-Laplacian. J. Math. Anal. Appl., 266: 383–400.
    • (2002) J. Math. Anal. Appl. , vol.266 , pp. 383-400
    • Agarwal, R.P.1    Lu, H.2    O'Regan, D.3
  • 4
    • 0035531021 scopus 로고    scopus 로고
    • Existence of three positive solutions to integral and discrete equations via the Leggett-Williams fixed point theorem
    • Agarwal, RP, and O'Regan, D. 2001. Existence of three positive solutions to integral and discrete equations via the Leggett-Williams fixed point theorem. Rocky Mt. J. Math, 31 (1): 23–35.
    • (2001) Rocky Mt. J. Math , vol.31 , Issue.1 , pp. 23-35
    • Agarwal, R.P.1    O'Regan, D.2
  • 5
    • 0032031149 scopus 로고    scopus 로고
    • Multiple positive solutions for a three-point boundary value problem
    • Anderson, DR. 1998. Multiple positive solutions for a three-point boundary value problem. Math. Comput. Modelling, 27 (6): 49–57.
    • (1998) Math. Comput. Modelling , vol.27 , Issue.6 , pp. 49-57
    • Anderson, D.R.1
  • 6
    • 0032003662 scopus 로고    scopus 로고
    • Three positive solutions to a discrete focal boundary value problem
    • Anderson, DR, Avery, RI, and Peterson, AC. 1998. Three positive solutions to a discrete focal boundary value problem. J. Comput. Appl. Math., 88: 103–118.
    • (1998) J. Comput. Appl. Math. , vol.88 , pp. 103-118
    • Anderson, D.R.1    Avery, R.I.2    Peterson, A.C.3
  • 7
    • 0001970714 scopus 로고    scopus 로고
    • Existence of multiple positive solutions to a conjugate boundary value problem
    • Avery, RI. 1998. Existence of multiple positive solutions to a conjugate boundary value problem. Math. Sci. Res. Hot-Line, 2 (1): 1–6.
    • (1998) Math. Sci. Res. Hot-Line , vol.2 , Issue.1 , pp. 1-6
    • Avery, R.I.1
  • 8
    • 0001874327 scopus 로고    scopus 로고
    • Multiple positive solutions of an-nth order focal boundary value problem
    • Avery, RI. 1998. Multiple positive solutions of an-nth order focal boundary value problem. Panam. Math. J, 8 (1): 39–55.
    • (1998) Panam. Math. J , vol.8 , Issue.1 , pp. 39-55
    • Avery, R.I.1
  • 9
    • 0001874327 scopus 로고    scopus 로고
    • Three positive solutions of a discrete second order conjugate problem
    • Avery, RI. 1998. Three positive solutions of a discrete second order conjugate problem. Panam. Math. J, 8 (2): 79–96.
    • (1998) Panam. Math. J , vol.8 , Issue.2 , pp. 79-96
    • Avery, R.I.1
  • 10
    • 0035426483 scopus 로고    scopus 로고
    • Twin solutions of boundary value problems for ordinary differential equations and finite differential equations
    • Avery, RI, Jen Chyan, Chuan, and Henderson, J. 2001. Twin solutions of boundary value problems for ordinary differential equations and finite differential equations. Comput. Math. Appl., 42: 695–704.
    • (2001) Comput. Math. Appl. , vol.42 , pp. 695-704
    • Avery, R.I.1    Jen Chyan, C.2    Henderson, J.3
  • 11
    • 52849094888 scopus 로고    scopus 로고
    • Three symmetric positive solutions for Lidstone problems by a generalization of the Leggett-Williams Theorem
    • Avery, RI, Davis, JM, and Henderson, J. 2000. Three symmetric positive solutions for Lidstone problems by a generalization of the Leggett-Williams Theorem. Electron. J. Differ. Equations, 2000 (40): 1–15.
    • (2000) Electron. J. Differ. Equations , vol.2000 , Issue.40 , pp. 1-15
    • Avery, R.I.1    Davis, J.M.2    Henderson, J.3
  • 12
    • 0002377075 scopus 로고    scopus 로고
    • Three symmetric positive solutions for a second order boundary value problem
    • Avery, RI, and Henderson, J. 2000. Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett., 13: 1–7.
    • (2000) Appl. Math. Lett. , vol.13 , pp. 1-7
    • Avery, R.I.1    Henderson, J.2
  • 13
    • 0001874327 scopus 로고    scopus 로고
    • Multiple positive solutions of a discrete second order conjugate problem
    • Avery, RI, and Peterson, AC. 2000. Multiple positive solutions of a discrete second order conjugate problem. Panam. Math. J., 8 (3): 1–12.
    • (2000) Panam. Math. J. , vol.8 , Issue.3 , pp. 1-12
    • Avery, R.I.1    Peterson, A.C.2
  • 15
    • 0034366426 scopus 로고    scopus 로고
    • Nonlinear eigenvalue problems involving two classes for functional differential equations
    • Davis, JM, Prasad, KR, and Yin, WKC. 2000. Nonlinear eigenvalue problems involving two classes for functional differential equations. Houston J. Math, 26 (3): 597–608.
    • (2000) Houston J. Math , vol.26 , Issue.3 , pp. 597-608
    • Davis, J.M.1    Prasad, K.R.2    Yin, W.K.C.3
  • 16
    • 0028494073 scopus 로고
    • Boundary value problems for singular second order functional differential equations
    • Erbe, LH, and Kong, QK. 1994. Boundary value problems for singular second order functional differential equations. J. Comput. Appl. Math., 53: 640–648.
    • (1994) J. Comput. Appl. Math. , vol.53 , pp. 640-648
    • Erbe, L.H.1    Kong, Q.K.2
  • 18
    • 0000242588 scopus 로고
    • Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations
    • Gustafson, GB, and Schmitt, K. 1972. Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations. J. Differ. Equations, 12: 129–147.
    • (1972) J. Differ. Equations , vol.12 , pp. 129-147
    • Gustafson, G.B.1    Schmitt, K.2
  • 20
    • 0036537575 scopus 로고    scopus 로고
    • Triple solutions for second-order three-point boundary value problems
    • He, Xiaoming, and Ge, Weigao. 2002. Triple solutions for second-order three-point boundary value problems. J. Math. Anal. Appl., 268: 256–265.
    • (2002) J. Math. Anal. Appl. , vol.268 , pp. 256-265
    • He, X.1    Ge, W.2
  • 22
    • 0002378698 scopus 로고    scopus 로고
    • Eigenvalue problems for nonlinear functional differential equations
    • Henderson, J, and Hudson, W. 1996. Eigenvalue problems for nonlinear functional differential equations. Commun. Appl. Nonlinear Anal., 3: 51–58.
    • (1996) Commun. Appl. Nonlinear Anal. , vol.3 , pp. 51-58
    • Henderson, J.1    Hudson, W.2
  • 23
    • 0002848603 scopus 로고    scopus 로고
    • Positive solutions and nonlinear eigenvalue problems for functional differential equation
    • Henderson, J, and Yin, W. 1999. Positive solutions and nonlinear eigenvalue problems for functional differential equation. Appl. Math. Lett., 12: 63–68.
    • (1999) Appl. Math. Lett. , vol.12 , pp. 63-68
    • Henderson, J.1    Yin, W.2
  • 24
    • 23044520154 scopus 로고    scopus 로고
    • Multiple symmetric positive solutions for a second order boundary value problem
    • Henderson, J, and Thompson, HB. 1999. Multiple symmetric positive solutions for a second order boundary value problem. Proc. Am. Math. Soc., 128: 2373–2379.
    • (1999) Proc. Am. Math. Soc. , vol.128 , pp. 2373-2379
    • Henderson, J.1    Thompson, H.B.2
  • 25
    • 0038002552 scopus 로고    scopus 로고
    • Existence of positive solutions for boundary value problems of second order functional differential equation
    • Jang, D, and Weng, P. 1998. Existence of positive solutions for boundary value problems of second order functional differential equation. Electron. J. Qual. Theory Differ. Equations, 6: 1–13.
    • (1998) Electron. J. Qual. Theory Differ. Equations , vol.6 , pp. 1-13
    • Jang, D.1    Weng, P.2
  • 26
    • 52449104172 scopus 로고    scopus 로고
    • Positive solutions and nonlinear eigenvalue problems for retarded second order differential equations
    • Karakostas, GL, and Tsamatos, PCh., 2002. Positive solutions and nonlinear eigenvalue problems for retarded second order differential equations. Electron. J. Differ. Equations, 2002 (59): 1–11.
    • (2002) Electron. J. Differ. Equations , vol.2002 , Issue.59 , pp. 1-11
    • Karakostas, G.L.1    Tsamatos, P.2
  • 27
    • 0038455819 scopus 로고    scopus 로고
    • Multiple positive solutions for a functional second order boundary value problem
    • Karakostas, GL, Mavridis, KG, and Tsamatos, PCh., 2003. Multiple positive solutions for a functional second order boundary value problem. J. Math. Anal. Appl., 282: 567–577.
    • (2003) J. Math. Anal. Appl. , vol.282 , pp. 567-577
    • Karakostas, G.L.1    Mavridis, K.G.2    Tsamatos, P.3
  • 28
    • 3042610937 scopus 로고    scopus 로고
    • Existence of multiple positive solutions for a nonlocal boundary value problem
    • Karakostas, GL, and Tsamatos, PCh., 2002. Existence of multiple positive solutions for a nonlocal boundary value problem. Topol. Methods in Nonlinear Anal., 19: 109–121.
    • (2002) Topol. Methods in Nonlinear Anal. , vol.19 , pp. 109-121
    • Karakostas, G.L.1    Tsamatos, P.2
  • 30
    • 0000394603 scopus 로고
    • Existence of multiple positive fixed points of nonlinear operators on ordered Banach spaces
    • Leggett, RW, and Williams, LR. 1979. Existence of multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J., 28: 673–688.
    • (1979) Indiana Univ. Math. J. , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2
  • 31
    • 0033132102 scopus 로고    scopus 로고
    • Existence of positive solutions for a nonlocal boundary value problem of second-order FDE
    • Weng, P, and Jiang, D. 1999. Existence of positive solutions for a nonlocal boundary value problem of second-order FDE. Comput. Math. Appl., 37: 1–9.
    • (1999) Comput. Math. Appl. , vol.37 , pp. 1-9
    • Weng, P.1    Jiang, D.2
  • 32
    • 0038002547 scopus 로고    scopus 로고
    • Existence of positive solutions for singular (n, n − 1) conjugate boundary value problem with delay
    • Weng, P, and Tian, Y. 1999. Existence of positive solutions for singular (n, n − 1) conjugate boundary value problem with delay. Far East J. Math. Sci, 1 (3): 367–382.
    • (1999) Far East J. Math. Sci , vol.1 , Issue.3 , pp. 367-382
    • Weng, P.1    Tian, Y.2
  • 33
    • 0034346754 scopus 로고    scopus 로고
    • Results and estimates on multiple positive solutions of Lidstone boundary value problems
    • Wong, PJY, and Agarwal, RP. 2000. Results and estimates on multiple positive solutions of Lidstone boundary value problems. Acta Math. Hung, 86 (1–2): 137–169.
    • (2000) Acta Math. Hung , vol.86 , Issue.1-2 , pp. 137-169
    • Wong, P.J.Y.1    Agarwal, R.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.