메뉴 건너뛰기




Volumn 11, Issue 3, 2019, Pages

Classification of crops, pastures, and tree plantations along the season with multi-sensor image time series in a subtropical agricultural region

Author keywords

Decision tree; land cover; Landsat 7; Landsat 8; OBIA; Random forest; Segmentation; Sentinel 1; Time series analysis

Indexed keywords

CROPS; DECISION TREES; FILLING; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; REMOTE SENSING; TROPICS;

EID: 85061349123     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs11030334     Document Type: Article
Times cited : (41)

References (100)
  • 2
    • 78649823362 scopus 로고    scopus 로고
    • Forecasting potential global environmental costs of livestock production 2000-2050
    • Pelletier, N.; Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000-2050. PNAS 2010, 107, 18371-18374
    • (2010) PNAS , vol.107 , pp. 18371-18374
    • Pelletier, N.1    Tyedmers, P.2
  • 3
    • 85061406435 scopus 로고    scopus 로고
    • McIntype, B.D., Herren, H.R., Wakhungu, J., Watson, R.T., Eds.; Island Press: Washington, DC, USA
    • IAASTD-International Assessment of Agricultural Knowledge, Science, and Technology for Development. Agriculture at a Crossroads-Global Report; McIntype, B.D., Herren, H.R., Wakhungu, J., Watson, R.T., Eds.; Island Press: Washington, DC, USA, 2009; Volume 320, ISBN 978-1-59726-538-6
    • (2009) Agriculture at a Crossroads-Global Report , vol.320
  • 4
    • 85051651713 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral images based on random multi-graphs
    • Gao, F.; Wang, Q.; Dong, J.; Xu, Q. Spectral and spatial classification of hyperspectral images based on random multi-graphs. Remote Sens. 2018, 10, 1271
    • (2018) Remote Sens , vol.10 , pp. 1271
    • Gao, F.1    Wang, Q.2    Dong, J.3    Xu, Q.4
  • 5
    • 85050487962 scopus 로고    scopus 로고
    • Fusion of moderate resolution earth observations for operational crop type mapping
    • Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of moderate resolution earth observations for operational crop type mapping. Remote Sens. 2018, 10, 1058
    • (2018) Remote Sens , vol.10 , pp. 1058
    • Torbick, N.1    Huang, X.2    Ziniti, B.3    Johnson, D.4    Masek, J.5    Reba, M.6
  • 7
    • 84922252429 scopus 로고    scopus 로고
    • Cloud cover throughout the agricultural growing season-Impacts on passive optical earth observations
    • Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season-Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438-447
    • (2015) Remote Sens. Environ , vol.156 , pp. 438-447
    • Whitcraft, A.K.1    Vermote, E.F.2    Becker-Reshef, I.3    Justice, C.O.4
  • 10
    • 2942658133 scopus 로고    scopus 로고
    • FAO: Rome, Italy
    • FAO-Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database 2015; FAO: Rome, Italy, 2015
    • (2015) FAOSTAT Statistical Database 2015
  • 12
    • 85061372665 scopus 로고    scopus 로고
    • (accessed on 25 October 2018)
    • IBGE-Instituto Brasileiro de Geografia e Estatística-Censo Agropecuário 2017-Produção Agrícola Municipal. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 25 October 2018)
  • 15
    • 85011321611 scopus 로고    scopus 로고
    • Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries
    • Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sens. Environ. 2017, 202, 129-141
    • (2017) Remote Sens. Environ , vol.202 , pp. 129-141
    • Azzari, G.1    Jain, M.2    Lobell, D.B.3
  • 17
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778-782
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 18
    • 84902969462 scopus 로고    scopus 로고
    • Mapping short-rotation plantations at regional scale using MODIS time series: Case of eucalypt plantations in Brazil
    • Le Maire, G.; Dupuy, S.; Nouvellon, Y.; Loos, R.A.; Hakamada, R. Mapping short-rotation plantations at regional scale using MODIS time series: Case of eucalypt plantations in Brazil. Remote Sens. Environ. 2014, 152, 136-149
    • (2014) Remote Sens. Environ , vol.152 , pp. 136-149
    • Le Maire, G.1    Dupuy, S.2    Nouvellon, Y.3    Loos, R.A.4    Hakamada, R.5
  • 19
    • 84945907812 scopus 로고    scopus 로고
    • An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series
    • Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015, 7, 13208-13232
    • (2015) Remote Sens , vol.7 , pp. 13208-13232
    • Matton, N.1    Canto, G.S.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 20
    • 85019381440 scopus 로고    scopus 로고
    • A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM)
    • Lebourgeois, V.; Dupuy, S.; Vintrou, é.; Ameline, M.; Butler, S.; Bégué, A. A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens. 2017, 9, 259
    • (2017) Remote Sens , vol.9 , pp. 259
    • Lebourgeois, V.1    Dupuy, S.2    Vintrou, É.3    Ameline, M.4    Butler, S.5    Bégué, A.6
  • 21
    • 41549100388 scopus 로고    scopus 로고
    • Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline
    • Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin, Germany
    • Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object-Based Image Analysis-Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin, Germany, 2008; pp. 77-89, ISBN 978-3-540-77057-2
    • (2008) Object-Based Image Analysis-Spatial Concepts for Knowledge-Driven Remote Sensing Applications , pp. 77-89
    • Hay, G.J.1    Castilla, G.2
  • 22
    • 84892975526 scopus 로고    scopus 로고
    • Combining per-pixel and object-based classifications for mapping land cover over large areas
    • Costa, H.; Carrão, H.; Bação, F.; Caetano, M. Combining per-pixel and object-based classifications for mapping land cover over large areas. Int. J. Remote Sens. 2014, 35, 738-753
    • (2014) Int. J. Remote Sens , vol.35 , pp. 738-753
    • Costa, H.1    Carrão, H.2    Bação, F.3    Caetano, M.4
  • 23
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 24
    • 85021219961 scopus 로고    scopus 로고
    • A review of supervised object-based land-cover image classification
    • Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277-293
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.130 , pp. 277-293
    • Ma, L.1    Li, M.2    Ma, X.3    Cheng, L.4    Du, P.5    Liu, Y.6
  • 26
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
    • Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89-100
    • (2016) Remote Sens. Environ , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 27
    • 80053056766 scopus 로고    scopus 로고
    • Filling gaps in vegetation index measurements for crop growth monitoring
    • Huang, Y.; Jiang, D.; Zhuang, D. Filling gaps in vegetation index measurements for crop growth monitoring. Afr. J. Agric. Res. 2011, 6, 2920-2930
    • (2011) Afr. J. Agric. Res , vol.6 , pp. 2920-2930
    • Huang, Y.1    Jiang, D.2    Zhuang, D.3
  • 28
    • 84928819002 scopus 로고    scopus 로고
    • A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM)
    • Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O. A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sens. 2015, 7, 1461-1481
    • (2015) Remote Sens , vol.7 , pp. 1461-1481
    • Whitcraft, A.K.1    Becker-Reshef, I.2    Justice, C.O.3
  • 30
    • 84931270718 scopus 로고    scopus 로고
    • Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data
    • Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171-179
    • (2015) Comput. Electron. Agric , vol.115 , pp. 171-179
    • Tatsumi, K.1    Yamashiki, Y.2    Canales Torres, M.A.3    Taipe, C.L.R.4
  • 31
    • 84971492749 scopus 로고    scopus 로고
    • Improved early crop type identification by joint use of high temporal resolution sar and optical image time series
    • Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution sar and optical image time series. Remote Sens. 2016, 8, 362
    • (2016) Remote Sens , vol.8 , pp. 362
    • Inglada, J.1    Vincent, A.2    Arias, M.3    Marais-Sicre, C.4
  • 32
    • 84924044646 scopus 로고    scopus 로고
    • Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time
    • Zhu, Z.;Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67-83
    • (2015) Remote Sens. Environ , vol.162 , pp. 67-83
    • Zhu, Z.1    Woodcock, C.E.2    Holden, C.3    Yang, Z.4
  • 34
    • 44149102637 scopus 로고    scopus 로고
    • Multi-temporalMODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
    • Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E.Multi-temporalMODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112-3130
    • (2008) Remote Sens Environ , vol.112 , pp. 3112-3130
    • Roy, D.P.1    Ju, J.2    Lewis, P.3    Schaaf, C.4    Gao, F.5    Hansen, M.6    Lindquist, E.7
  • 35
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance
    • Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207-2218
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 36
    • 84920511605 scopus 로고    scopus 로고
    • Reconstruction of missing data in time-series of optical satellite images using self-organizing Kohonen maps
    • Skakun, S.V.; Basarab, R.M. Reconstruction of missing data in time-series of optical satellite images using self-organizing Kohonen maps. J. Autom. Inf. Sci. 2014, 46, 19-26
    • (2014) J. Autom. Inf. Sci , vol.46 , pp. 19-26
    • Skakun, S.V.1    Basarab, R.M.2
  • 37
    • 85051656995 scopus 로고    scopus 로고
    • Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
    • Ndikumana, E.; Ho, D.; Minh, T.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10 1217
    • (2018) Remote Sens , vol.10 , pp. 1217
    • Ndikumana, E.1    Ho, D.2    Minh, T.3    Baghdadi, N.4    Courault, D.5    Hossard, L.6
  • 38
    • 84899680136 scopus 로고    scopus 로고
    • Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data
    • Jia, K.; Liang, S.; Zhang, N.; Wei, X.; Gu, X.; Zhao, X.; Yao, Y.; Xie, X. Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J. Photogramm. Remote Sens. 2014, 93, 49-55
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.93 , pp. 49-55
    • Jia, K.1    Liang, S.2    Zhang, N.3    Wei, X.4    Gu, X.5    Zhao, X.6    Yao, Y.7    Xie, X.8
  • 40
    • 0036322873 scopus 로고    scopus 로고
    • Season long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full polarization backscatter signatures over paddy rice field and their relationship with biological variables_20.pdf
    • Inoue, Y.; Kurosu, T.; Maeno, H.; Uratsuka, S.; Kozu, T.; Dabrowska-Zielinska, K.; Qi, J. Season long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full polarization backscatter signatures over paddy rice field and their relationship with biological variables_20.pdf. Remote Sens. Environ. 2002, 81, 194-204
    • (2002) Remote Sens. Environ , vol.81 , pp. 194-204
    • Inoue, Y.1    Kurosu, T.2    Maeno, H.3    Uratsuka, S.4    Kozu, T.5    Dabrowska-Zielinska, K.6    Qi, J.7
  • 42
    • 85047218996 scopus 로고    scopus 로고
    • Multi-data approach for crop classification using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata
    • Hütt, C.;Waldhoff, G. Multi-data approach for crop classification using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata. Eur. J. Remote Sens. 2017, 51, 62-74
    • (2017) Eur. J. Remote Sens , vol.51 , pp. 62-74
    • Hütt, C.1    Waldhoff, G.2
  • 43
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery
    • Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sens. 2014, 6, 964-983
    • (2014) Remote Sens , vol.6 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 44
    • 85045960898 scopus 로고    scopus 로고
    • Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory
    • Berhane, T.; Lane, C.;Wu, Q.; Autrey, B.; Anenkhonov, O.; Chepinoga, V.; Liu, H. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sens. 2018, 10, 580
    • (2018) Remote Sens , vol.10 , pp. 580
    • Berhane, T.1    Lane, C.2    Wu, Q.3    Autrey, B.4    Anenkhonov, O.5    Chepinoga, V.6    Liu, H.7
  • 46
    • 63749121428 scopus 로고    scopus 로고
    • Land cover mapping of large areas using chain classification of neighboring Landsat satellite images
    • Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens. Environ. 2009, 113, 957-964
    • (2009) Remote Sens. Environ , vol.113 , pp. 957-964
    • Knorn, J.1    Rabe, A.2    Radeloff, V.C.3    Kuemmerle, T.4    Kozak, J.5    Hostert, P.6
  • 47
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 48
    • 85032877078 scopus 로고    scopus 로고
    • Support vector machines for land cover mapping from remote sensor imagery
    • Li, J., Yang, X., Eds.; Springer: New York, NY, USA
    • Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Li, J., Yang, X., Eds.; Springer: New York, NY, USA, 2015; pp. 265-279, ISBN 978-94-017-9812-9
    • (2015) Monitoring and Modeling of Global Changes: A Geomatics Perspective , pp. 265-279
    • Shi, D.1    Yang, X.2
  • 49
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
    • Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356-12379
    • (2015) Remote Sens , vol.7 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6    Dedieu, G.7    Sepulcre, G.8    Bontemps, S.9    Defourny, P.10
  • 50
    • 85039732569 scopus 로고    scopus 로고
    • Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery
    • Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2018, 18, 18
    • (2018) Sensors , vol.18 , pp. 18
    • Noi, P.T.1    Kappas, M.2
  • 51
    • 84956846131 scopus 로고    scopus 로고
    • Camargo, Köppen and Thornthwaite climate classification systems in defining climatical regions of the state of São Paulo, Brazil
    • De Souza Rolim, G.; Lucas, L.E. Camargo, Köppen and Thornthwaite climate classification systems in defining climatical regions of the state of São Paulo, Brazil. Int. J. Climatol. 2016, 36, 636-643
    • (2016) Int. J. Climatol , vol.36 , pp. 636-643
    • De Souza Rolim, G.1    Lucas, L.E.2
  • 52
    • 85052250351 scopus 로고    scopus 로고
    • 1991 (accessed on 8 February 2019)
    • Camargo, A.D. Classificação Climática para Zoneamento de Aptidão Agroclimática. 1991. Available online: https://scholar.google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=+Classifica%C3%A7%C3%A3o+ clim%C3%A1tica+para+zoneamento+de+aptid%C3%A3o+agroclim%C3%A1tica&btnG= (accessed on 8 February 2019)
    • Classificação Climática para Zoneamento de Aptidão Agroclimática
    • Camargo, A.D.1
  • 53
    • 38349054264 scopus 로고    scopus 로고
    • Nova classificação climática do Estado do Rio Grande do Sul A new climatic classification for the State of Rio Grande do Sul, Brazil
    • Maluf, J.R.T. Nova classificação climática do Estado do Rio Grande do Sul. A new climatic classification for the State of Rio Grande do Sul, Brazil. Rev. Bras. Agrometeorol. 2000, 8, 141-150
    • (2000) Rev. Bras. Agrometeorol , vol.8 , pp. 141-150
    • Maluf, J.R.T.1
  • 56
    • 84908340188 scopus 로고    scopus 로고
    • Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
    • Schmidt, G.; Jenkerson, C.; Masek, J.; Vermote, E.; Gao, F. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description. Open File Rep. 2013-1057 2013, 1-27
    • (2013) Open File Rep. 2013-1057 , pp. 1-27
    • Schmidt, G.1    Jenkerson, C.2    Masek, J.3    Vermote, E.4    Gao, F.5
  • 58
    • 85038213185 scopus 로고    scopus 로고
    • Barest pixel composite for agricultural areas using landsat time series
    • Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest pixel composite for agricultural areas using landsat time series. Remote Sens. 2017, 9, 1245
    • (2017) Remote Sens , vol.9 , pp. 1245
    • Diek, S.1    Fornallaz, F.2    Schaepman, M.E.3    De Jong, R.4
  • 59
    • 85033436404 scopus 로고    scopus 로고
    • Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
    • Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509-523
    • (2018) Remote Sens. Environ , vol.204 , pp. 509-523
    • Belgiu, M.1    Csillik, O.2
  • 60
    • 84861335868 scopus 로고    scopus 로고
    • Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas
    • Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553-562
    • (2012) Remote Sens. Environ , vol.123 , pp. 553-562
    • Vieira, M.A.1    Formaggio, A.R.2    Rennó, C.D.3    Atzberger, C.4    Aguiar, D.A.5    Mello, M.P.6
  • 61
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301-1316
    • (2011) Remote Sens. Environ , vol.115 , pp. 1301-1316
    • Peña-barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 65
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295-309
    • (1988) Remote Sens. Environ , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 66
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266
    • (1996) Remote Sens. Environ , vol.58 , pp. 257-266
    • Gao, B.C.1
  • 67
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289-298
    • (1996) Remote Sens. Environ , vol.58 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 68
    • 0029504020 scopus 로고
    • Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data
    • Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127-140
    • (1995) Remote Sens. Environ , vol.54 , pp. 127-140
    • Hall, D.K.1    Riggs, G.A.2    Salomonson, V.V.3
  • 69
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025-3033
    • (2006) Int. J. Remote Sens , vol.27 , pp. 3025-3033
    • Xu, H.1
  • 70
    • 0031231595 scopus 로고    scopus 로고
    • Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil
    • Madeira, J.; Bedidi, A.; Cervelle, B.; Pouget, M.; Flay, N. Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. Int. J. Remote Sens. 1997, 18, 2835-2852
    • (1997) Int. J. Remote Sens , vol.18 , pp. 2835-2852
    • Madeira, J.1    Bedidi, A.2    Cervelle, B.3    Pouget, M.4    Flay, N.5
  • 71
    • 84855177476 scopus 로고    scopus 로고
    • Missforest-non-parametric missing value imputation for mixed-type data
    • Stekhoven, D.J.; Bühlmann, P. Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112-118
    • (2012) Bioinformatics , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 72
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 73
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Dragu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Dragu, L.2
  • 74
    • 85016782791 scopus 로고    scopus 로고
    • Ranger: A fast implementation of random forests for high dimensional data in C++ and R
    • Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1-17
    • (2017) J. Stat. Softw , vol.77 , pp. 1-17
    • Wright, M.N.1    Ziegler, A.2
  • 76
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. Approximate statistical tests for comparing supervised classification learning algorithms. Ergeb. Math. Ihrer Grenzgeb. 1998, 10, 1895-1923
    • (1998) Ergeb. Math. Ihrer Grenzgeb , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 77
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153-157
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • McNemar, Q.1
  • 78
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the tatistical significance of differences in classificagtion accuracy
    • Foody, G.M. Thematic map comparison: Evaluating the tatistical significance of differences in classificagtion accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 79
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S.L. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1997, 1, 317-328
    • (1997) Data Min. Knowl. Discov , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 81
    • 0034023040 scopus 로고    scopus 로고
    • Practical implications of design-based sampling inference for thematic map accuracy assessment
    • Stehman, S.V. Practical implications of design-based sampling inference for thematic map accuracy assessment. Remote Sens. Environ. 2000, 72, 35-45
    • (2000) Remote Sens. Environ , vol.72 , pp. 35-45
    • Stehman, S.V.1
  • 82
    • 0020108638 scopus 로고
    • Using know map category marginal frequencies to improve estimates of thematic map accuracy
    • Card, D.H. Using know map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 431-439
    • (1982) Photogramm. Eng. Remote Sens , vol.48 , pp. 431-439
    • Card, D.H.1
  • 84
    • 85034771593 scopus 로고    scopus 로고
    • In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest
    • Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest. Remote Sens. 2017, 9, 1184
    • (2017) Remote Sens , vol.9 , pp. 1184
    • Song, Q.1    Hu, Q.2    Zhou, Q.3    Hovis, C.4    Xiang, M.5    Tang, H.6    Wu, W.7
  • 86
    • 84893445992 scopus 로고    scopus 로고
    • Automated crop fi eld extraction from multi-temporal Web Enabled Landsat Data
    • Yan, L.; Roy, D.P. Automated crop fi eld extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42-64
    • (2014) Remote Sens. Environ , vol.144 , pp. 42-64
    • Yan, L.1    Roy, D.P.2
  • 87
    • 84922238304 scopus 로고    scopus 로고
    • Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape
    • Müller, H.; Ru, P.; Grif, P.; José, A.; Siqueira, B.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490-499
    • (2015) Remote Sens. Environ , vol.156 , pp. 490-499
    • Müller, H.1    Ru, P.2    Grif, P.3    José, A.4    Siqueira, B.5    Hostert, P.6
  • 89
    • 85016964828 scopus 로고    scopus 로고
    • Using spectrotemporal indices to improve the fruit-tree crop classification accuracy
    • Peña, M.A.; Liao, R.; Brenning, A. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy. ISPRS J. Photogramm. Remote Sens. 2017, 128, 158-169
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.128 , pp. 158-169
    • Peña, M.A.1    Liao, R.2    Brenning, A.3
  • 92
    • 85031028989 scopus 로고    scopus 로고
    • Improving Local Per Level Hierarchical Classification
    • Paes, B.C.; Plastino, A.; Freitas, A.A. Improving Local Per Level Hierarchical Classification. J. Inf. Data Manag. 2012, 3, 394-409
    • (2012) J. Inf. Data Manag , vol.3 , pp. 394-409
    • Paes, B.C.1    Plastino, A.2    Freitas, A.A.3
  • 93
    • 84864415476 scopus 로고    scopus 로고
    • Land use classification from multitemporal landsat imagery using the yearly land cover dynamics (YLCD) method
    • Julien, Y.; Sobrino, J.A.; Jiménez-Muñoz, J.C. Land use classification from multitemporal landsat imagery using the yearly land cover dynamics (YLCD) method. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 711-720
    • (2011) Int. J. Appl. Earth Obs. Geoinf , vol.13 , pp. 711-720
    • Julien, Y.1    Sobrino, J.A.2    Jiménez-Muñoz, J.C.3
  • 95
    • 84950112053 scopus 로고    scopus 로고
    • Self-guided segmentation and classification of multi-temporal Landsat 8 images for Crop type mapping in Southeastern Brazil
    • Schultz, B.; Immitzer, M.; Formaggio, A.R.; Del, I.; Sanches, A.; José, A.; Luiz, B.; Atzberger, C. Self-guided segmentation and classification of multi-temporal Landsat 8 images for Crop type mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482-14508
    • (2015) Remote Sens , vol.7 , pp. 14482-14508
    • Schultz, B.1    Immitzer, M.2    Formaggio, A.R.3    Del, I.4    Sanches, A.5    José, A.6    Luiz, B.7    Atzberger, C.8
  • 96
    • 0029780862 scopus 로고    scopus 로고
    • Knowledge based land-cover classification using ERS-1/JERS-1 SAR Composites
    • Dobson, M.C.; Pierce, L.E.; Ulaby, F.T. Knowledge based land-cover classification using ERS-1/JERS-1 SAR Composites. IEEE Trans. Geosci. Remote Sens. 1996, 34, 83-99
    • (1996) IEEE Trans. Geosci. Remote Sens , vol.34 , pp. 83-99
    • Dobson, M.C.1    Pierce, L.E.2    Ulaby, F.T.3
  • 97
    • 0033099765 scopus 로고    scopus 로고
    • Experimental and model investigation on radar classification capability
    • Ferrazzoli, P.; Guerriero, L.; Schiavon, G. Experimental and model investigation on radar classification capability. IEEE Trans. Geosci. Remote Sens. 1999, 37, 960-968
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , pp. 960-968
    • Ferrazzoli, P.1    Guerriero, L.2    Schiavon, G.3
  • 98
    • 84896958540 scopus 로고    scopus 로고
    • Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada
    • Cable, J.W.; Kovacs, J.M.; Shang, J.; Jiao, X. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sens. 2014, 6, 2372-2392
    • (2014) Remote Sens , vol.6 , pp. 2372-2392
    • Cable, J.W.1    Kovacs, J.M.2    Shang, J.3    Jiao, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.