-
1
-
-
0002914327
-
The structure of weakly compact sets in Banach spaces
-
Amir, D., Lindenstrauss, J., The structure of weakly compact sets in Banach spaces. Ann. Math. 88 (1968), 33–46.
-
(1968)
Ann. Math.
, vol.88
, pp. 33-46
-
-
Amir, D.1
Lindenstrauss, J.2
-
2
-
-
43049179878
-
Unconditional families in Banach spaces
-
Argyros, S.A., Dodos, P., Kanellopoulos, V., Unconditional families in Banach spaces. Math. Ann. 341 (2008), 15–38.
-
(2008)
Math. Ann.
, vol.341
, pp. 15-38
-
-
Argyros, S.A.1
Dodos, P.2
Kanellopoulos, V.3
-
3
-
-
0003337334
-
The Descriptive Set Theory of Polish Group Actions
-
Cambridge University Press Cambridge
-
Becker, H., Kechris, A.S., The Descriptive Set Theory of Polish Group Actions. 1996, Cambridge University Press, Cambridge.
-
(1996)
-
-
Becker, H.1
Kechris, A.S.2
-
4
-
-
0003661407
-
Selected Topics in Infinite-Dimensional Topology
-
Polish Scientific Publishers Warszawa, Poland
-
Bessaga, C., Pełczyński, A.A., Selected Topics in Infinite-Dimensional Topology. 1975, Polish Scientific Publishers, Warszawa, Poland.
-
(1975)
-
-
Bessaga, C.1
Pełczyński, A.A.2
-
5
-
-
10044227642
-
Zur Theorie der Systeme linearer Gleichungen
-
Eidelheit, M., Zur Theorie der Systeme linearer Gleichungen. Stud. Math. 6 (1936), 130–148.
-
(1936)
Stud. Math.
, vol.6
, pp. 130-148
-
-
Eidelheit, M.1
-
6
-
-
84973517393
-
The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces
-
Gabriyelyan, S., Ka̧kol, J., Plebanek, G., The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces. Stud. Math. 233 (2016), 119–139.
-
(2016)
Stud. Math.
, vol.233
, pp. 119-139
-
-
Gabriyelyan, S.1
Ka̧kol, J.2
Plebanek, G.3
-
7
-
-
0003962321
-
Abstract Harmonic Analysis, vol. I
-
2nd edition Springer-Verlag Berlin
-
Hewitt, E., Ross, K.A., Abstract Harmonic Analysis, vol. I. 2nd edition, 1979, Springer-Verlag, Berlin.
-
(1979)
-
-
Hewitt, E.1
Ross, K.A.2
-
8
-
-
0004020473
-
The Structure of Compact Groups
-
3rd edition De Gruyter Berlin
-
Hofmann, K.H., Morris, S.A., The Structure of Compact Groups. 3rd edition, 2013, De Gruyter, Berlin.
-
(2013)
-
-
Hofmann, K.H.1
Morris, S.A.2
-
10
-
-
84938419851
-
Barrelled spaces with(out) separable quotients
-
Ka̧kol, J., Saxon, S.A., Todd, A., Barrelled spaces with(out) separable quotients. Bull. Aust. Math. Soc. 90 (2014), 295–303.
-
(2014)
Bull. Aust. Math. Soc.
, vol.90
, pp. 295-303
-
-
Ka̧kol, J.1
Saxon, S.A.2
Todd, A.3
-
11
-
-
70350582122
-
Remarks concerning the separable quotient problem
-
Ka̧kol, J., Śliwa, W., Remarks concerning the separable quotient problem. Note Mat. 13 (1993), 277–282.
-
(1993)
Note Mat.
, vol.13
, pp. 277-282
-
-
Ka̧kol, J.1
Śliwa, W.2
-
12
-
-
85062942553
-
The separable quotient problem for topological groups
-
in press
-
Leiderman, A.G., Morris, S.A., Tkachenko, M.G., The separable quotient problem for topological groups. Isr. J. Math., 2019 in press.
-
(2019)
Isr. J. Math.
-
-
Leiderman, A.G.1
Morris, S.A.2
Tkachenko, M.G.3
-
13
-
-
51249162508
-
Some problems on bases in Banach and Fréchet spaces
-
Pełczyński, A., Some problems on bases in Banach and Fréchet spaces. Isr. J. Math. 2 (1964), 132–138.
-
(1964)
Isr. J. Math.
, vol.2
, pp. 132-138
-
-
Pełczyński, A.1
-
14
-
-
0013001728
-
The Infinite-Dimensional Topology of Function Spaces
-
Elsevier, North-Holland Amsterdam
-
van Mill, J., The Infinite-Dimensional Topology of Function Spaces. 2006, Elsevier, North-Holland, Amsterdam.
-
(2006)
-
-
van Mill, J.1
-
15
-
-
84915902628
-
Metrizable (LF)-spaces, (db)-spaces, and the separable quotient problem
-
Saxon, S.A., Narayanaswami, P.P., Metrizable (LF)-spaces, (db)-spaces, and the separable quotient problem. Bull. Aust. Math. Soc. 23 (1981), 65–80.
-
(1981)
Bull. Aust. Math. Soc.
, vol.23
, pp. 65-80
-
-
Saxon, S.A.1
Narayanaswami, P.P.2
-
16
-
-
0001047025
-
The equivalence of some Banach space problems
-
Saxon, S., Wilansky, A., The equivalence of some Banach space problems. Colloq. Math. 37 (1977), 217–226.
-
(1977)
Colloq. Math.
, vol.37
, pp. 217-226
-
-
Saxon, S.1
Wilansky, A.2
-
17
-
-
0034389397
-
Every infinite-dimensional non-archimedian Fréchet space has an orthogonal basic sequence
-
Śliwa, W., Every infinite-dimensional non-archimedian Fréchet space has an orthogonal basic sequence. Indag. Math. 11 (2000), 463–466.
-
(2000)
Indag. Math.
, vol.11
, pp. 463-466
-
-
Śliwa, W.1
|