-
1
-
-
84883178689
-
Finite difference methods for mean field games
-
Springer, Berlin
-
Y. ACHDOU, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Springer, Berlin, 2013, pp. 1-47.
-
(2013)
Hamilton-jacobi Equations: Approximations, Numerical Analysis and Applications
, pp. 1-47
-
-
Achdou, Y.1
-
2
-
-
85047213555
-
Existence of positive solutions for an approximation of stationary meanfield games
-
N. ALMAYOUF et al., Existence of positive solutions for an approximation of stationary meanfield games, Involve, 10(2016), pp. 473-493.
-
Involve
, vol.10
, Issue.2016
, pp. 473-493
-
-
Almayouf, N.1
-
3
-
-
85029471535
-
Two numerical approaches to stationary meanfield games
-
N. ALMULLA, R. FERREIRA, AND D. GOMES, Two numerical approaches to stationary meanfield games, Dyn. Games Appl., 7(2017), pp. 657-682.
-
Dyn. Games Appl.
, vol.7
, Issue.2017
, pp. 657-682
-
-
Almulla, N.1
Ferreira, R.2
Gomes, D.3
-
4
-
-
84865608369
-
Explicit solutions of some linear-quadratic mean field games
-
M. BARDI, Explicit solutions of some linear-quadratic mean field games, Netw. Heterog. Media, 7(2012), pp. 243-261.
-
Netw. Heterog. Media
, vol.7
, Issue.2012
, pp. 243-261
-
-
Bardi, M.1
-
5
-
-
84902324370
-
LQG mean-field games with ergodic cost
-
Florence, IEEE, Piscataway, NJ
-
M. BARDI AND F. PRIULI, LQG mean-field games with ergodic cost, in Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, IEEE, Piscataway, NJ, 2013, pp. 2493-2498.
-
(2013)
Proceedings of the 52nd IEEE Conference on Decision and Control
, pp. 2493-2498
-
-
Bardi, M.1
Priuli, F.2
-
6
-
-
84911092308
-
Linear-quadratic N-person and mean-field games with ergodic cost
-
M. BARDI AND F. S. PRIULI, Linear-quadratic N-person and mean-field games with ergodic cost, SIAM J. Control Optim., 52(2014), pp. 3022-3052.
-
SIAM J. Control Optim.
, vol.52
, Issue.2014
, pp. 3022-3052
-
-
Bardi, M.1
Priuli, F.S.2
-
7
-
-
85088964125
-
-
SpringerBriefs Math., Springer, New York
-
A. BENSOUSSAN, J. FREHSE, AND P. YAM, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs Math., Springer, New York, 2013.
-
(2013)
Mean Field Games and Mean Field Type Control Theory
-
-
Bensoussan, A.1
Frehse, J.2
Yam, P.3
-
9
-
-
84887524276
-
Long time average of first order mean field games and weak KAM theory
-
P. CARDALIAGUET, Long time average of first order mean field games and weak KAM theory, Dyn. Games Appl., 3(2013), pp. 473-488.
-
Dyn. Games Appl.
, vol.3
, Issue.2013
, pp. 473-488
-
-
Cardaliaguet, P.1
-
10
-
-
85028753869
-
Weak solutions for first order mean-field games with local coupling
-
Springer INdAM Ser. 11, Cham, Switzerland
-
P. CARDALIAGUET, Weak solutions for first order mean-field games with local coupling, in Analysis and Geometry in Control Theory and its Applications, Springer INdAM Ser. 11, Cham, Switzerland, 2015, pp. 111-158.
-
(2015)
Analysis and Geometry in Control Theory and its Applications
, pp. 111-158
-
-
Cardaliaguet, P.1
-
11
-
-
84942369075
-
Second order mean field games with degenerate diffusion and local coupling
-
P. CARDALIAGUET, P. GARBER, A. PORRETTA, AND D. TONON, Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differential Equations Appl., 22(2015), pp. 1287-1317.
-
NoDEA Nonlinear Differential Equations Appl.
, vol.22
, Issue.2015
, pp. 1287-1317
-
-
Cardaliaguet, P.1
Garber, P.2
Porretta, A.3
Tonon, D.4
-
13
-
-
84865574440
-
Long time average of mean field games
-
P. CARDALIAGUET, J.-M. LASRY, P.-L. LIONS, AND A. PORRETTA, Long time average of mean field games, Netw. Heterog. Media, 7(2012), pp. 279-301.
-
Netw. Heterog. Media
, vol.7
, Issue.2012
, pp. 279-301
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
14
-
-
84890470397
-
Long time average of mean field games with a nonlocal coupling
-
P. CARDALIAGUET, J.-M. LASRY, P.-L. LIONS, AND A. PORRETTA, Long time average of mean field games with a nonlocal coupling, SIAM J. Control Optim., 51(2013), pp. 3558-3591.
-
SIAM J. Control Optim.
, vol.51
, Issue.2013
, pp. 3558-3591
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
15
-
-
84876129326
-
Control of McKean-Vlasov dynamics versus mean field games
-
R. CARMONA, F. DELARUE, AND A. LACHAPELLE, Control of McKean-Vlasov dynamics versus mean field games, Math. Financ. Econ., 7(2013), pp. 131-166.
-
Math. Financ. Econ.
, vol.7
, Issue.2013
, pp. 131-166
-
-
Carmona, R.1
Delarue, F.2
Lachapelle, A.3
-
16
-
-
84925426147
-
A probabilistic weak formulation of mean field games and applications
-
R. CARMONA AND D. LACKER, A probabilistic weak formulation of mean field games and applications, Ann. Appl. Probab., 25(2015), pp. 1189-1231.
-
Ann. Appl. Probab.
, vol.25
, Issue.2015
, pp. 1189-1231
-
-
Carmona, R.1
Lacker, D.2
-
17
-
-
0003979176
-
-
Pure Appl. Math. 10 pt. 1, Academic Press, New York
-
J. DIEUDONNÉ, Foundations of Modern Analysis, Pure Appl. Math. 10 pt. 1, Academic Press, New York, 1969.
-
(1969)
Foundations of Modern Analysis
-
-
Dieudonné, J.1
-
18
-
-
85045796045
-
First-order, stationary mean-field games with congestion
-
D. EVANGELISTA, R. FERREIRA, D. GOMES, L. NURBEKYAN, AND V. VOSKANYAN, First-order, stationary mean-field games with congestion, Nonlinear Anal., 173(2018), pp. 37-74.
-
Nonlinear Anal.
, vol.173
, Issue.2018
, pp. 37-74
-
-
Evangelista, D.1
Ferreira, R.2
Gomes, D.3
Nurbekyan, L.4
Voskanyan, V.5
-
19
-
-
85045795923
-
Radially symmetric mean-field games with congestion
-
IEEE, Piscataway, NJ
-
D. EVANGELISTA, D. GOMES, AND L. NURBEKYAN, Radially symmetric mean-field games with congestion, in Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, Piscataway, NJ, 2017, pp. 3158-3163.
-
(2017)
Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
, pp. 3158-3163
-
-
Evangelista, D.1
Gomes, D.2
Nurbekyan, L.3
-
20
-
-
0003285448
-
Weak convergence methods for nonlinear partial differential equations
-
AMS, Providence, RI
-
L. C. EVANS, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. Math. 74, AMS, Providence, RI, 1990.
-
(1990)
CBMS Reg. Conf. Ser. Math.
, vol.74
-
-
Evans, L.C.1
-
21
-
-
85038573877
-
Duality principles for fully nonlinear elliptic equations, in Trends in Partial Differential Equations of Mathematical Physics
-
Birkhäuser, Basel
-
D. GOMES, Duality principles for fully nonlinear elliptic equations, in Trends in Partial Differential Equations of Mathematical Physics, Progr. Nonlinear Differential Equations Appl. 61, Birkhäuser, Basel, 2005, pp. 125-136.
-
(2005)
Progr. Nonlinear Differential Equations Appl.
, vol.61
, pp. 125-136
-
-
Gomes, D.1
-
22
-
-
77955593037
-
Generalized Mather problem and selection principles for viscosity solutions and Mather measures
-
D. GOMES, Generalized Mather problem and selection principles for viscosity solutions and Mather measures, Adv. Calc. Var., 1(2008), pp. 291-307.
-
Adv. Calc. Var.
, vol.1
, Issue.2008
, pp. 291-307
-
-
Gomes, D.1
-
23
-
-
84945453305
-
Existence for stationary mean-field games with congestion and quadratic Hamiltonians
-
D. GOMES AND H. MITAKE, Existence for stationary mean-field games with congestion and quadratic Hamiltonians, NoDEA Nonlinear Differential Equations Appl., 22(2015), pp. 1897-1910.
-
NoDEA Nonlinear Differential Equations Appl.
, vol.22
, Issue.2015
, pp. 1897-1910
-
-
Gomes, D.1
Mitake, H.2
-
24
-
-
85010789894
-
Explicit solutions of one-dimensional, firstorder, stationary mean-field games with congestion
-
IEEE, Piscataway, NJ
-
D. GOMES, L. NURBEKYAN, AND M. PRAZERES, Explicit solutions of one-dimensional, firstorder, stationary mean-field games with congestion, in Proceedings of the IEEE 55th Conference on Decision and Control, CDC 2016, IEEE, Piscataway, NJ, 2016, pp. 4534-4539.
-
(2016)
Proceedings of the IEEE 55th Conference on Decision and Control, CDC 2016
, pp. 4534-4539
-
-
Gomes, D.1
Nurbekyan, L.2
Prazeres, M.3
-
25
-
-
85045415487
-
One-dimensional stationary mean-field games with local coupling
-
D. GOMES, L. NURBEKYAN, AND M. PRAZERES, One-dimensional stationary mean-field games with local coupling, Dyn. Games Appl., 8(2017), pp. 315-351.
-
Dyn. Games Appl.
, vol.8
, Issue.2017
, pp. 315-351
-
-
Gomes, D.1
Nurbekyan, L.2
Prazeres, M.3
-
26
-
-
84931064331
-
Obstacle mean-field game problem
-
D. GOMES AND S. PATRIZI, Obstacle mean-field game problem, Interfaces Free Bound., 17(2015), pp. 55-68.
-
Interfaces Free Bound.
, vol.17
, Issue.2015
, pp. 55-68
-
-
Gomes, D.1
Patrizi, S.2
-
27
-
-
84978437345
-
Weakly coupled mean-field game systems
-
D. GOMES AND S. PATRIZI, Weakly coupled mean-field game systems, Nonlinear Anal., 144(2016), pp. 110-138.
-
Nonlinear Anal.
, vol.144
, Issue.2016
, pp. 110-138
-
-
Gomes, D.1
Patrizi, S.2
-
28
-
-
84892860445
-
On the existence of classical solutions for stationary extended mean field games
-
D. GOMES, S. PATRIZI, AND V. VOSKANYAN, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99(2014), pp. 49-79.
-
Nonlinear Anal.
, vol.99
, Issue.2014
, pp. 49-79
-
-
Gomes, D.1
Patrizi, S.2
Voskanyan, V.3
-
29
-
-
84947474862
-
Time-dependent mean-field games with logarithmic nonlinearities
-
D. A. GOMES AND E. PIMENTEL, Time-dependent mean-field games with logarithmic nonlinearities, SIAM J. Math. Anal., 47(2015), pp. 3798-3812.
-
SIAM J. Math. Anal.
, vol.47
, Issue.2015
, pp. 3798-3812
-
-
Gomes, D.A.1
Pimentel, E.2
-
30
-
-
84978423911
-
Local regularity for mean-field games in the whole space
-
D. GOMES AND E. PIMENTEL, Local regularity for mean-field games in the whole space, Minimax Theory Appl., 1(2016), pp. 65-82.
-
Minimax Theory Appl.
, vol.1
, Issue.2016
, pp. 65-82
-
-
Gomes, D.1
Pimentel, E.2
-
31
-
-
85101168605
-
-
SpringerBriefs Math., Springer, Cham, Switzerland
-
D. GOMES, E. PIMENTEL, AND V. VOSKANYAN, Regularity Theory for Mean-Field Game Systems, SpringerBriefs Math., Springer, Cham, Switzerland, 2016.
-
(2016)
Regularity Theory for Mean-field Game Systems
-
-
Gomes, D.1
Pimentel, E.2
Voskanyan, V.3
-
32
-
-
85045388079
-
Regularity for mean-field games systems with initial-initial boundary conditions: The subquadratic case
-
Springer, Cham, Switzerland
-
D. GOMES AND E. A. PIMENTEL, Regularity for mean-field games systems with initial-initial boundary conditions: The subquadratic case, in Dynamics, Games and Science, CIM Ser. Math. Sci. 1, Springer, Cham, Switzerland, 2015, pp. 291-304.
-
(2015)
Dynamics, Games and Science, CIM Ser. Math. Sci.
, vol.1
, pp. 291-304
-
-
Gomes, D.1
Pimentel, E.A.2
-
33
-
-
84865604666
-
A-priori estimates for stationary meanfield games
-
D. GOMES, G. E. PIRES, AND H. SÁNCHEZ-MORGADO, A-priori estimates for stationary meanfield games, Netw. Heterog. Media, 7(2012), pp. 303-314.
-
Netw. Heterog. Media
, vol.7
, Issue.2012
, pp. 303-314
-
-
Gomes, D.1
Pires, G.E.2
Sánchez-Morgado, H.3
-
34
-
-
84902324374
-
Mean field games with logistic population dynamics
-
Florence, December 2013, IEEE, Piscataway, NJ
-
D. GOMES AND R. RIBEIRO, Mean field games with logistic population dynamics, in Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, December 2013, IEEE, Piscataway, NJ, 2013.
-
(2013)
Proceedings of the 52nd IEEE Conference on Decision and Control
-
-
Gomes, D.1
Ribeiro, R.2
-
36
-
-
84899464039
-
Mean field games models-a brief survey
-
D. GOMES AND J. SAÚDE, Mean field games models-a brief survey, Dyn. Games Appl., 4(2014), pp. 110-154.
-
Dyn. Games Appl.
, vol.4
, Issue.2014
, pp. 110-154
-
-
Gomes, D.1
Saúde, J.2
-
37
-
-
85060550431
-
Numerical methods for finite-state mean-field games satisfying a monotonicity condition
-
to appear
-
D. GOMES AND J. SAÚDE, Numerical methods for finite-state mean-field games satisfying a monotonicity condition, Appl. Math. Optim., to appear.
-
Appl. Math. Optim.
-
-
Gomes, D.1
Saúde, J.2
-
38
-
-
84950311543
-
Short-time existence of solutions for mean-field games with congestion
-
D. GOMES AND V. VOSKANYAN, Short-time existence of solutions for mean-field games with congestion, J. Lond. Math. Soc. (2), 92(2015), pp. 778-799.
-
J. Lond. Math. Soc. (2)
, vol.92
, Issue.2015
, pp. 778-799
-
-
Gomes, D.1
Voskanyan, V.2
-
39
-
-
84964876681
-
Extended deterministic mean-field games
-
D. A. GOMES AND V. K. VOSKANYAN, Extended deterministic mean-field games, SIAM J. Control Optim., 54(2016), pp. 1030-1055.
-
SIAM J. Control Optim.
, vol.54
, Issue.2016
, pp. 1030-1055
-
-
Gomes, D.A.1
Voskanyan, V.K.2
-
41
-
-
68849084877
-
A reference case for mean field games models
-
O. GUÉANT, A reference case for mean field games models, J. Math. Pures Appl. (9), 92(2009), pp. 276-294.
-
J. Math. Pures Appl. (9)
, vol.92
, Issue.2009
, pp. 276-294
-
-
Guéant, O.1
-
42
-
-
84864332611
-
Mean field games equations with quadratic Hamiltonian: A specific approach
-
O. GUÉANT, Mean field games equations with quadratic Hamiltonian: A specific approach, Math. Models Methods Appl. Sci., 22(2012), 1250022.
-
Math. Models Methods Appl. Sci.
, vol.22
, Issue.2012
, pp. 1250022
-
-
Guéant, O.1
-
43
-
-
34648831837
-
Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized e-Nash equilibria
-
M. HUANG, P. E. CAINES, AND R. P. MALHAMÉ, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized e-Nash equilibria, IEEE Trans. Automat. Control, 52(2007), pp. 1560-1571.
-
IEEE Trans. Automat. Control
, vol.52
, Issue.2007
, pp. 1560-1571
-
-
Huang, M.1
Caines, P.E.2
Malhamé, R.P.3
-
44
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
M. HUANG, R. P. MALHAMÉ, AND P. E. CAINES, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6(2006), pp. 221-251.
-
Commun. Inf. Syst.
, vol.6
, Issue.2006
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
45
-
-
85013420135
-
The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus
-
H. ISHII, H. MITAKE, AND H. V. TRAN, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pures Appl. (9), 108(2017), pp. 125-149.
-
J. Math. Pures Appl. (9)
, vol.108
, Issue.2017
, pp. 125-149
-
-
Ishii, H.1
Mitake, H.2
Tran, H.V.3
-
46
-
-
85014073373
-
The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems
-
H. ISHII, H. MITAKE, AND H. V. TRAN, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pures Appl. (9), 108(2017), pp. 261-305.
-
J. Math. Pures Appl. (9)
, vol.108
, Issue.2017
, pp. 261-305
-
-
Ishii, H.1
Mitake, H.2
Tran, H.V.3
-
47
-
-
0007469909
-
An introduction to variational inequalities and their applications
-
SIAM, Philadelphia
-
D. KINDERLEHRER AND G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications, Classics Appl. Math. 31, SIAM, Philadelphia, 2000.
-
(2000)
Classics Appl. Math.
, vol.31
-
-
Kinderlehrer, D.1
Stampacchia, G.2
-
48
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
D. LACKER, A general characterization of the mean field limit for stochastic differential games, Probab. Theory Related Fields, 165(2016), pp. 581-648.
-
Probab. Theory Related Fields
, vol.165
, Issue.2016
, pp. 581-648
-
-
Lacker, D.1
-
49
-
-
33750627999
-
Jeux a champ moyen. I. Le cas stationnaire
-
J.-M. LASRY AND P.-L. LIONS, Jeux a champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343(2006), pp. 619-625.
-
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.2006
, pp. 619-625
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
50
-
-
33751077273
-
Jeux a champ moyen. II. Horizon fini et controle optimal
-
J.-M. LASRY AND P.-L. LIONS, Jeux a champ moyen. II. Horizon fini et controle optimal, C. R. Math. Acad. Sci. Paris, 343(2006), pp. 679-684.
-
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.2006
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
53
-
-
85053682629
-
One-dimensional, non-local, first-order, stationary mean-field games with congestion: A Fourier approach
-
L. NURBEKYAN, One-dimensional, non-local, first-order, stationary mean-field games with congestion: A Fourier approach, Discrete Contin. Dyn. Syst. Ser. B, 11(2018), pp. 963-990.
-
Discrete Contin. Dyn. Syst. Ser. B
, vol.11
, Issue.2018
, pp. 963-990
-
-
Nurbekyan, L.1
-
54
-
-
85015147717
-
Regularity for second-order stationary mean-field games
-
E. PIMENTEL AND V. VOSKANYAN, Regularity for second-order stationary mean-field games, Indiana Univ. Math. J., 66(2017), pp. 1-22.
-
Indiana Univ. Math. J.
, vol.66
, Issue.2017
, pp. 1-22
-
-
Pimentel, E.1
Voskanyan, V.2
-
55
-
-
84899459829
-
On the planning problem for the mean field games system
-
A. PORRETTA, On the planning problem for the mean field games system, Dyn. Games Appl., 4(2014), pp. 231-256.
-
Dyn. Games Appl.
, vol.4
, Issue.2014
, pp. 231-256
-
-
Porretta, A.1
-
56
-
-
84925014244
-
Weak solutions to Fokker-Planck equations and mean field games
-
A. PORRETTA, Weak solutions to Fokker-Planck equations and mean field games, Arch. Ration. Mech. Anal., 216(2015), pp. 1-62.
-
Arch. Ration. Mech. Anal.
, vol.216
, Issue.2015
, pp. 1-62
-
-
Porretta, A.1
-
57
-
-
85010780230
-
Some estimates for stationary extended mean field games
-
V. K. VOSKANYAN, Some estimates for stationary extended mean field games, Dokl. Nats. Akad. Nauk Armen., 113(2013), pp. 30-36.
-
Dokl. Nats. Akad. Nauk Armen.
, vol.113
, Issue.2013
, pp. 30-36
-
-
Voskanyan, V.K.1
|