메뉴 건너뛰기




Volumn 18, Issue 1, 2019, Pages 54-61

Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield

Author keywords

forecast; MLP network; neural model; prediction error; sensitivity analysis; yield simulation

Indexed keywords


EID: 85059487345     PISSN: 20953119     EISSN: None     Source Type: Journal    
DOI: 10.1016/S2095-3119(18)62110-0     Document Type: Article
Times cited : (52)

References (32)
  • 1
    • 0032933344 scopus 로고    scopus 로고
    • A stochastic modelling approach for real-time forecasting of winter wheat yield
    • Bannayan, M, Crout, N, A stochastic modelling approach for real-time forecasting of winter wheat yield. Field Crops Research 62 (1999), 85–95.
    • (1999) Field Crops Research , vol.62 , pp. 85-95
    • Bannayan, M.1    Crout, N.2
  • 2
    • 84919781274 scopus 로고    scopus 로고
    • Usefulness of MODIS data for assessment of the growth and development of winter oilseed rape
    • Bartoszek, K, Usefulness of MODIS data for assessment of the growth and development of winter oilseed rape. Zemdirbyste-Agriculture 101 (2014), 445–452.
    • (2014) Zemdirbyste-Agriculture , vol.101 , pp. 445-452
    • Bartoszek, K.1
  • 4
    • 85032907813 scopus 로고    scopus 로고
    • Simulating response of wheat to timing and depth of irrigation water in drip irrigation system using CERES-Wheat model
    • Dar, E A, Brar, A S, Mishra, S K, Singh, K B, Simulating response of wheat to timing and depth of irrigation water in drip irrigation system using CERES-Wheat model. Field Crops Research 214 (2017), 149–163.
    • (2017) Field Crops Research , vol.214 , pp. 149-163
    • Dar, E.A.1    Brar, A.S.2    Mishra, S.K.3    Singh, K.B.4
  • 5
    • 85028582309 scopus 로고    scopus 로고
    • Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields
    • Dias, H B, Sentelhas, P C, Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research 213 (2017), 174–185.
    • (2017) Field Crops Research , vol.213 , pp. 174-185
    • Dias, H.B.1    Sentelhas, P.C.2
  • 6
    • 0034039285 scopus 로고    scopus 로고
    • Yield analysis of winter oilseed rape (Brassica napus L.). A review
    • Diepenbrock, W, Yield analysis of winter oilseed rape (Brassica napus L.). A review. Field Crops Research 67 (2000), 35–49.
    • (2000) Field Crops Research , vol.67 , pp. 35-49
    • Diepenbrock, W.1
  • 7
    • 84941358545 scopus 로고    scopus 로고
    • Winter oilseed rape and winter wheat growth prediction using remote sensing methods
    • Domínguez, J A, Kumhálová, J, Novák, P, Winter oilseed rape and winter wheat growth prediction using remote sensing methods. Plant, Soil and Environment 61 (2015), 410–416.
    • (2015) Plant, Soil and Environment , vol.61 , pp. 410-416
    • Domínguez, J.A.1    Kumhálová, J.2    Novák, P.3
  • 10
    • 84975818479 scopus 로고    scopus 로고
    • A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields
    • Farjam, A, Omid, M, Akram, A, Fazel Niari, Z, A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. Journal of Agricultural Science and Technology 16 (2014), 767–778.
    • (2014) Journal of Agricultural Science and Technology , vol.16 , pp. 767-778
    • Farjam, A.1    Omid, M.2    Akram, A.3    Fazel Niari, Z.4
  • 13
    • 84938099481 scopus 로고    scopus 로고
    • Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks
    • Grahovac, J, Jokić, A, Dodić, J, Vućurović, D, Dodić, S, Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renewable Energy 85 (2016), 953–958.
    • (2016) Renewable Energy , vol.85 , pp. 953-958
    • Grahovac, J.1    Jokić, A.2    Dodić, J.3    Vućurović, D.4    Dodić, S.5
  • 14
    • 33750516942 scopus 로고    scopus 로고
    • Methods of predicting milk yield in dairy cows — Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs)
    • Grzesiak, W, Błaszczyk, P, Lacroix, R, Methods of predicting milk yield in dairy cows — Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture 54 (2006), 69–83.
    • (2006) Computers and Electronics in Agriculture , vol.54 , pp. 69-83
    • Grzesiak, W.1    Błaszczyk, P.2    Lacroix, R.3
  • 15
    • 0344699380 scopus 로고    scopus 로고
    • Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation
    • Guérif, M, Duke, C, Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation. European Journal of Agronomy 9 (1998), 127–136.
    • (1998) European Journal of Agronomy , vol.9 , pp. 127-136
    • Guérif, M.1    Duke, C.2
  • 18
    • 79960033327 scopus 로고    scopus 로고
    • Application of soft computing to predict blast-induced ground vibration
    • Khandelwal, M, Kumar, D L, Yellishetty, M, Application of soft computing to predict blast-induced ground vibration. Engineering with Computers 27 (2011), 117–125.
    • (2011) Engineering with Computers , vol.27 , pp. 117-125
    • Khandelwal, M.1    Kumar, D.L.2    Yellishetty, M.3
  • 19
    • 34948877689 scopus 로고    scopus 로고
    • A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop
    • Klem, K, Váňová, M, Hajšlová, J, Lancová, K, Sehnalová, M, A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant, Soil and Environment 53 (2007), 421–429.
    • (2007) Plant, Soil and Environment , vol.53 , pp. 421-429
    • Klem, K.1    Váňová, M.2    Hajšlová, J.3    Lancová, K.4    Sehnalová, M.5
  • 20
    • 84958948537 scopus 로고    scopus 로고
    • A self-organizing cascade neural network with random weights for nonlinear system modeling
    • Li, F, Qiao, J, Han, H, Yang, C, A self-organizing cascade neural network with random weights for nonlinear system modeling. Applied Soft Computing 42 (2016), 184–193.
    • (2016) Applied Soft Computing , vol.42 , pp. 184-193
    • Li, F.1    Qiao, J.2    Han, H.3    Yang, C.4
  • 22
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park, S J, Hwang, C S, Vlek, P L G, Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agricultural Systems 85 (2005), 59–81.
    • (2005) Agricultural Systems , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.G.3
  • 23
    • 85045259821 scopus 로고    scopus 로고
    • Regression-based models for the prediction of unconfined compressive strength of artificially structured soil
    • Sharma, L K, Singh, T N, Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Engineering with Computers 34 (2017), 1–12.
    • (2017) Engineering with Computers , vol.34 , pp. 1-12
    • Sharma, L.K.1    Singh, T.N.2
  • 25
    • 84855825466 scopus 로고    scopus 로고
    • Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India
    • Singh, A, Imtiyaz, M, Isaac, R K, Denis, D M, Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agricultural Water Management 104 (2012), 113–120.
    • (2012) Agricultural Water Management , vol.104 , pp. 113-120
    • Singh, A.1    Imtiyaz, M.2    Isaac, R.K.3    Denis, D.M.4
  • 27
    • 85030563997 scopus 로고    scopus 로고
    • Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR)
    • Torkashvand, A M, Ahmadi, A, Nikravesh, N L, Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture 16 (2017), 1634–1644.
    • (2017) Journal of Integrative Agriculture , vol.16 , pp. 1634-1644
    • Torkashvand, A.M.1    Ahmadi, A.2    Nikravesh, N.L.3
  • 28
    • 0034046333 scopus 로고    scopus 로고
    • A model of growth and sugar accumulation of sugar beet for potential production conditions. SUBEMOpo I. Theory and model structure
    • Vandendriessche, H J, A model of growth and sugar accumulation of sugar beet for potential production conditions. SUBEMOpo I. Theory and model structure. Agricultural Systems 64 (2000), 1–19.
    • (2000) Agricultural Systems , vol.64 , pp. 1-19
    • Vandendriessche, H.J.1
  • 32
    • 85045185393 scopus 로고    scopus 로고
    • Estimating the average treatment effect of adopting stress tolerant variety on rice yield in China
    • Zhou, J, Tang, L, Yu, X, Estimating the average treatment effect of adopting stress tolerant variety on rice yield in China. Journal of Integrative Agriculture 17 (2018), 940–948.
    • (2018) Journal of Integrative Agriculture , vol.17 , pp. 940-948
    • Zhou, J.1    Tang, L.2    Yu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.