메뉴 건너뛰기




Volumn , Issue , 2011, Pages 3-49

Algorithms for active learning

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85059391225     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (2)

References (68)
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
    • (1988) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 4
    • 0025897859 scopus 로고
    • Neural net algorithms that learn in polynomial time from examples and queries
    • E. Baum. Neural net algorithms that learn in polynomial time from examples and queries. IEEE Transactions on Neural Networks, 2(1), 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.1
    • Baum, E.1
  • 8
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10(3):237-304, 1995.
    • (1995) Statistical Science , vol.10 , Issue.3 , pp. 237-304
    • Chaloner, K.1    Verdinelli, I.2
  • 9
    • 0003328374 scopus 로고
    • Neural network exploration using optimal experiment design
    • Morgan Kaufmann
    • D. Cohn. Neural network exploration using optimal experiment design. In Advances in Neural Information Processing Systems (NIPS), volume 6, pages 679-686. Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems (NIPS) , vol.6 , pp. 679-686
    • Cohn, D.1
  • 10
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 17
    • 34547875776 scopus 로고    scopus 로고
    • Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants
    • S. Danziger, J. Zeng, Y. Wang, R. Brachmann, and R. Lathrop. Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants. Bioinformatics, 23(13):1104-1114, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1104-1114
    • Danziger, S.1    Zeng, J.2    Wang, Y.3    Brachmann, R.4    Lathrop, R.5
  • 20
    • 0031209604 scopus 로고    scopus 로고
    • Selective samping using the query by committee algorithm
    • Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective samping using the query by committee algorithm. Machine Learning, 28:133-168, 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 21
    • 0000012198 scopus 로고    scopus 로고
    • Selective sampling for example-based word sense disambiguation
    • A. Fujii, T. Tokunaga, K. Inui, and H. Tanaka. Selective sampling for example-based word sense disambiguation. Computational Linguistics, 24(4):573-597, 1998.
    • (1998) Computational Linguistics , vol.24 , Issue.4 , pp. 573-597
    • Fujii, A.1    Tokunaga, T.2    Inui, K.3    Tanaka, H.4
  • 28
    • 25844460429 scopus 로고    scopus 로고
    • Sample selection for statistical parsing
    • R. Hwa. Sample selection for statistical parsing. Computational Linguis- tics, 30(3):73-77, 2004.
    • (2004) Computational Linguis- tics , vol.30 , Issue.3 , pp. 73-77
    • Hwa, R.1
  • 33
    • 0036611772 scopus 로고    scopus 로고
    • Algorithms for optimal scheduling and management of hidden Markov model sensors
    • V. Krishnamurthy. Algorithms for optimal scheduling and management of hidden Markov model sensors. IEEE Transactions on Signal Processing, 50(6):1382-1397, 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.6 , pp. 1382-1397
    • Krishnamurthy, V.1
  • 36
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest neighbor classifiers. Machine Learning, 54(2):125-152, 2004.
    • (2004) Machine Learning , vol.54 , Issue.2 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 37
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classiffcation
    • Y. Liu. Active learning with support vector machine applied to gene expression data for cancer classiffcation. Journal of Chemical Information and Computer Sciences, 44:1936-1941, 2004.
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , pp. 1936-1941
    • Liu, Y.1
  • 38
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 42
    • 0000531852 scopus 로고
    • Generalization as search
    • T. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
    • (1982) Artificial Intelligence , vol.18 , pp. 203-226
    • Mitchell, T.1
  • 46
    • 77955317449 scopus 로고    scopus 로고
    • Department of electrical and computer engineering, University of Wisconsin-Madison
    • R. Nowak. The geometry of generalized binary search. Department of electrical and computer engineering, University of Wisconsin-Madison, 2009.
    • (2009) The geometry of generalized binary search
    • Nowak, R.1
  • 49
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • A.I. Schein and L.H. Ungar. Active learning for logistic regression: An evaluation. Machine Learning, 68(3):235-265, 2007.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 52
    • 68949137209 scopus 로고    scopus 로고
    • Computer Sciences Technical Report 1648, University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
    • (2009) Active learning literature survey
    • Settles, B.1
  • 56
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 623-656, 1948.
    • (1948) Bell System Technical Journal , vol.27 , Issue.379-423 , pp. 623-656
    • Shannon, C.E.1
  • 57
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • L. Getoor and B. Taskar, editors, MIT Press
    • C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar, editors, Intro- duction to Statistical Relational Learning. MIT Press, 2006.
    • (2006) Intro- duction to Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 61
    • 13544261390 scopus 로고    scopus 로고
    • Combining active and semisupervised learning for spoken language understanding
    • G. Tür, D. Hakkani-Tür, and R.E. Schapire. Combining active and semisupervised learning for spoken language understanding. Speech Commu- nication, 45(2):171-186, 2005.
    • (2005) Speech Commu- nication , vol.45 , Issue.2 , pp. 171-186
    • Tür, G.1    Hakkani-Tür, D.2    Schapire, R.E.3
  • 65
    • 0036613407 scopus 로고    scopus 로고
    • An active learning framework for content based information retrieval
    • C. Zhang and T. Chen. An active learning framework for content based information retrieval. IEEE Transactions on Multimedia, 4(2):260-268, 2002.
    • (2002) IEEE Transactions on Multimedia , vol.4 , Issue.2 , pp. 260-268
    • Zhang, C.1    Chen, T.2
  • 67
    • 67650272548 scopus 로고    scopus 로고
    • Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
    • X. Zhu and A. Goldberg. Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, 2009.
    • (2009) Introduction to Semi-Supervised Learning
    • Zhu, X.1    Goldberg, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.