메뉴 건너뛰기




Volumn 871, Issue , 2018, Pages

Potential of UAV-based active sensing for monitoring rice leaf nitrogen status

Author keywords

Active canopy sensor; RapidSCAN; Red edge; Sensing distance evaluation; Ultra low level airborne

Indexed keywords

ANTENNAS; INFRARED DEVICES; NITROGEN; REGRESSION ANALYSIS; VEGETATION;

EID: 85058790024     PISSN: None     EISSN: 1664462X     Source Type: Journal    
DOI: 10.3389/fpls.2018.01834     Document Type: Article
Times cited : (43)

References (61)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H., (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723. 10.1109/TAC.1974.1100705.
    • (1974) IEEE Trans. Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 32644475701 scopus 로고    scopus 로고
    • Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh
    • Alam M. M., Ladha J. K., Khan S. R., Foyjunnessa Harun-ur-Rashid Khan A. H.. (2005). Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh. Agron. J. 97, 949–959. 10.2134/agronj2004.0206.
    • (2005) Agron. J , vol.97 , pp. 949-959
    • Alam, M.M.1    Ladha, J.K.2    Khan, S.R.3    Foyjunnessa Harun-ur-Rashid4    Khan, A.H.5
  • 3
    • 85022015091 scopus 로고    scopus 로고
    • Topdressing nitrogen recommendation in wheat after applying organic manures: the use of field diagnostic tools
    • Aranguren M., Castellón A., Aizpurua A., (2018). Topdressing nitrogen recommendation in wheat after applying organic manures: the use of field diagnostic tools. Nutr. Cycl. Agroecosyst. 110, 89–103. 10.1007/S10705-017-9865-7.
    • (2018) Nutr. Cycl. Agroecosyst , vol.110 , pp. 89-103
    • Aranguren, M.1    Castellón, A.2    Aizpurua, A.3
  • 4
    • 50849144917 scopus 로고    scopus 로고
    • Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels
    • Asner G. P., Martin R. E., (2008). Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens. Environ. 112, 3958–3970. 10.1016/j.rse.2008.07.003.
    • (2008) Remote Sens. Environ , vol.112 , pp. 3958-3970
    • Asner, G.P.1    Martin, R.E.2
  • 5
    • 84971673537 scopus 로고    scopus 로고
    • In-season estimation of rice grain yield using critical nitrogen dilution curve
    • Ata-Ul-Karim S. T., Liu X., Lu Z., Yuan Z., Zhu Y., Cao W., (2016). In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res. 195, 1–8. 10.1016/j.fcr.2016.04.027.
    • (2016) Field Crops Res , vol.195 , pp. 1-8
    • Ata-Ul-Karim, S.T.1    Liu, X.2    Lu, Z.3    Yuan, Z.4    Zhu, Y.5    Cao, W.6
  • 7
    • 84995486544 scopus 로고    scopus 로고
    • Wheat phenomics in the field by RapidScan: NDVI vs. NDRE
    • Bonfil D. J., (2016). Wheat phenomics in the field by RapidScan: NDVI vs. NDRE. Israel J. Plant Sci. 2016, 1–14. 10.1080/07929978.2016.1249135.
    • (2016) Israel J. Plant Sci , vol.2016 , pp. 1-14
    • Bonfil, D.J.1
  • 8
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan H., (1987). Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370. 10.1007/BF02294361.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 9
    • 0000623388 scopus 로고
    • Nitrogen-Total
    • Page A.L., Miller R.H., Keeney D.R., (eds), Madison, WI, American Society of Agronomy, eds
    • Bremner J. M., Mulvaney C. S., (1982). Nitrogen-Total, in Methods of Soil Analysis, Part 2. eds Page A. L., Miller R. H., Keeney D.R., (Madison, WI: American Society of Agronomy), 595–624.
    • (1982) Methods of Soil Analysis, Part 2 , pp. 595-624
    • Bremner, J.M.1    Mulvaney, C.S.2
  • 10
    • 84926163900 scopus 로고    scopus 로고
    • Active canopy sensing of winter wheat nitrogen status: an evaluation of two sensor systems
    • Cao Q., Miao Y., Feng G., Gao X., Li F., Liu B.. (2015). Active canopy sensing of winter wheat nitrogen status: an evaluation of two sensor systems. Comput. Electron. Agricult. 112, 54–67. 10.1016/j.compag.2014.08.012.
    • (2015) Comput. Electron. Agricult , vol.112 , pp. 54-67
    • Cao, Q.1    Miao, Y.2    Feng, G.3    Gao, X.4    Li, F.5    Liu, B.6
  • 11
    • 84887817288 scopus 로고    scopus 로고
    • Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor
    • Cao Q., Miao Y., Wang H., Huang S., Cheng S., Khosla R.. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 154, 133–144. 10.1016/j.fcr.2013.08.005.
    • (2013) Field Crops Res , vol.154 , pp. 133-144
    • Cao, Q.1    Miao, Y.2    Wang, H.3    Huang, S.4    Cheng, S.5    Khosla, R.6
  • 12
    • 84861758703 scopus 로고    scopus 로고
    • Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content
    • Clevers J. G. P. W., Kooistra L., (2012). Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5, 574–583. 10.1109/JSTARS.2011.2176468.
    • (2012) IEEE J. Select. Top. Appl. Earth Observ. Remote Sens , vol.5 , pp. 574-583
    • Clevers, J.G.P.W.1    Kooistra, L.2
  • 13
    • 84879200172 scopus 로고    scopus 로고
    • Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture
    • Conant R. T., Berdanier A. B., Grace P. R., (2013). Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Global Biogeochem. Cycles 27, 558–566. 10.1002/gbc.20053.
    • (2013) Global Biogeochem. Cycles , vol.27 , pp. 558-566
    • Conant, R.T.1    Berdanier, A.B.2    Grace, P.R.3
  • 14
    • 77952646639 scopus 로고    scopus 로고
    • Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate
    • Danielw B., Johne S., (2010). Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 102, 964–971. 10.2134/agronj2010.0004.
    • (2010) Agron. J , vol.102 , pp. 964-971
    • Danielw, B.1    Johne, S.2
  • 15
    • 84872176008 scopus 로고    scopus 로고
    • A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
    • Delegido J., Verrelst J., Meza C. M., Rivera J. P., Alonso L., Moreno J., (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52. 10.1016/j.eja.2012.12.001.
    • (2013) Eur. J. Agron , vol.46 , pp. 42-52
    • Delegido, J.1    Verrelst, J.2    Meza, C.M.3    Rivera, J.P.4    Alonso, L.5    Moreno, J.6
  • 16
    • 0002084937 scopus 로고    scopus 로고
    • Fitting a straight line by least squares
    • John Wiley & Sons, Ltd
    • Draper N. R., Smith H., (2014). Fitting a straight line by least squares, in Applied Regression Analysis (John Wiley & Sons, Ltd), 15–46. 10.1002/9781118625590.ch1.
    • (2014) Applied Regression Analysis , pp. 15-46
    • Draper, N.R.1    Smith, H.2
  • 18
    • 85027951032 scopus 로고    scopus 로고
    • Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications
    • Gevaert C. M., Suomalainen J., Tang J., Kooistra L., (2015). Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 8, 3140–3146. 10.1109/JSTARS.2015.2406339.
    • (2015) IEEE J. Select. Topics Appl. Earth Observ. Remote Sens , vol.8 , pp. 3140-3146
    • Gevaert, C.M.1    Suomalainen, J.2    Tang, J.3    Kooistra, L.4
  • 19
    • 84888199590 scopus 로고    scopus 로고
    • Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages
    • Gnyp M. L., Miao Y., Yuan F., Ustin S. L., Yu K., Yao Y.. (2014). Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 155, 42–55. 10.1016/j.fcr.2013.09.023.
    • (2014) Field Crops Res , vol.155 , pp. 42-55
    • Gnyp, M.L.1    Miao, Y.2    Yuan, F.3    Ustin, S.L.4    Yu, K.5    Yao, Y.6
  • 21
    • 85020020236 scopus 로고    scopus 로고
    • Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China
    • Huang J., Xu C., Ridoutt B. G., Wang X., Ren P., (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Cleaner Product. 159, 171–179. 10.1016/J.JCLEPRO.2017.05.008.
    • (2017) J. Cleaner Product , vol.159 , pp. 171-179
    • Huang, J.1    Xu, C.2    Ridoutt, B.G.3    Wang, X.4    Ren, P.5
  • 22
    • 84939434046 scopus 로고    scopus 로고
    • Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China
    • Huang S., Miao Y., Zhao G., Yuan F., Ma X., Tan C.. (2015). Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 7, 10646–10667. 10.3390/rs70810646.
    • (2015) Remote Sens , vol.7 , pp. 10646-10667
    • Huang, S.1    Miao, Y.2    Zhao, G.3    Yuan, F.4    Ma, X.5    Tan, C.6
  • 24
    • 0000043946 scopus 로고
    • Derivation of leaf-area index from quality of light on the forest floor
    • Jordan C. F., (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology 50, 663–666. 10.2307/1936256.
    • (1969) Ecology , vol.50 , pp. 663-666
    • Jordan, C.F.1
  • 25
    • 84863526756 scopus 로고    scopus 로고
    • Red edge as a potential index for detecting differences in plant nitrogen status in winter wheat
    • Kanke Y., Raun W., Solie J., Stone M., Taylor R., (2012). Red edge as a potential index for detecting differences in plant nitrogen status in winter wheat. J. Plant Nutr. 35, 1526–1541. 10.1080/01904167.2012.689912.
    • (2012) J. Plant Nutr , vol.35 , pp. 1526-1541
    • Kanke, Y.1    Raun, W.2    Solie, J.3    Stone, M.4    Taylor, R.5
  • 26
    • 48249097297 scopus 로고
    • Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation
    • Knipling E. B., (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1, 155–159. 10.1016/S0034-4257(70)80021-9.
    • (1970) Remote Sens. Environ , vol.1 , pp. 155-159
    • Knipling, E.B.1
  • 27
    • 85028968530 scopus 로고    scopus 로고
    • Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor
    • Krienke B., Ferguson R. B., Schlemmer M., Holland K., Marx D., Eskridge K., (2017). Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor. Precis. Agric. 18, 900–915. 10.1007/s11119-017-9534-5.
    • (2017) Precis. Agric , vol.18 , pp. 900-915
    • Krienke, B.1    Ferguson, R.B.2    Schlemmer, M.3    Holland, K.4    Marx, D.5    Eskridge, K.6
  • 28
    • 84917678609 scopus 로고    scopus 로고
    • Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing
    • Lamb D. W., Schneider D. A., Stanley J. N., (2014). Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing. Precis. Agric. 15, 523–531. 10.1007/s11119-014-9350-0.
    • (2014) Precis. Agric , vol.15 , pp. 523-531
    • Lamb, D.W.1    Schneider, D.A.2    Stanley, J.N.3
  • 29
    • 68749098455 scopus 로고    scopus 로고
    • Ultra low-level airborne (ULLA) sensing of crop canopy reflectance: a case study using a CropCircle™ sensor
    • Lamb D. W., Trotter M. G., Schneider D. A., (2009). Ultra low-level airborne (ULLA) sensing of crop canopy reflectance: a case study using a CropCircle™ sensor. Comput. Electron. Agric. 69, 86–91. 10.1016/j.compag.2009.07.004.
    • (2009) Comput. Electron. Agric , vol.69 , pp. 86-91
    • Lamb, D.W.1    Trotter, M.G.2    Schneider, D.A.3
  • 30
    • 84892503131 scopus 로고    scopus 로고
    • Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices
    • Li F., Miao Y., Feng G., Yuan F., Yue S., Gao X.. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res. 157, 111–123. 10.1016/j.fcr.2013.12.018.
    • (2014) Field Crops Res , vol.157 , pp. 111-123
    • Li, F.1    Miao, Y.2    Feng, G.3    Yuan, F.4    Yue, S.5    Gao, X.6
  • 31
    • 84929581266 scopus 로고    scopus 로고
    • Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method
    • Liang L., Di L., Zhang L., Deng M., Qin Z., Zhao S.. (2015). Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134. 10.1016/j.rse.2015.04.032.
    • (2015) Remote Sens. Environ , vol.165 , pp. 123-134
    • Liang, L.1    Di, L.2    Zhang, L.3    Deng, M.4    Qin, Z.5    Zhao, S.6
  • 32
    • 84874369007 scopus 로고    scopus 로고
    • Enhanced nitrogen deposition over China
    • 23426264
    • Liu X., Zhang Y., Han W., Tang A., Shen J., Cui Z.. (2013). Enhanced nitrogen deposition over China. Nature 494, 459–462. 10.1038/NATURE1191723426264.
    • (2013) Nature , vol.494 , pp. 459-462
    • Liu, X.1    Zhang, Y.2    Han, W.3    Tang, A.4    Shen, J.5    Cui, Z.6
  • 33
    • 85032509491 scopus 로고    scopus 로고
    • Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor
    • 29074943
    • Lu J., Miao Y., Shi W., Li J., Yuan F., (2017). Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 7:14073. 10.1038/s41598-017-14597-129074943.
    • (2017) Sci. Rep , vol.7 , pp. 14073
    • Lu, J.1    Miao, Y.2    Shi, W.3    Li, J.4    Yuan, F.5
  • 34
    • 85002557571 scopus 로고    scopus 로고
    • Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service
    • Maresma Á., Ariza M., Martínez E., Lloveras J., Martínez-Casasnovas J., (2016). Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sens. 8:973. 10.3390/rs8120973.
    • (2016) Remote Sens , vol.8 , pp. 973
    • Maresma, Á.1    Ariza, M.2    Martínez, E.3    Lloveras, J.4    Martínez-Casasnovas, J.5
  • 35
    • 80054819122 scopus 로고    scopus 로고
    • Long-term experiments for sustainable nutrient management in China. a review
    • Miao Y., Stewart B. A., Zhang F., (2011). Long-term experiments for sustainable nutrient management in China. a review. Agron. Sustain. Dev. 31, 397–414. 10.1051/agro/2010034.
    • (2011) Agron. Sustain. Dev , vol.31 , pp. 397-414
    • Miao, Y.1    Stewart, B.A.2    Zhang, F.3
  • 36
    • 85033488922 scopus 로고    scopus 로고
    • Characterizing soybean vigor and productivity using multiple crop canopy sensor readings
    • Miller J. J., Schepers J. S., Shapiro C. A., Arneson N. J., Eskridge K. M., Oliveira M. C.. (2018). Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crops Res. 216, 22–31. 10.1016/j.fcr.2017.11.006.
    • (2018) Field Crops Res , vol.216 , pp. 22-31
    • Miller, J.J.1    Schepers, J.S.2    Shapiro, C.A.3    Arneson, N.J.4    Eskridge, K.M.5    Oliveira, M.C.6
  • 38
    • 84955466167 scopus 로고    scopus 로고
    • The spectral calibration method for a crop nitrogen sensor
    • Ni J., Dong J., Zhang J., Pang F., Cao W., Zhu Y., (2016). The spectral calibration method for a crop nitrogen sensor. Sensor Rev. 36, 48–56. 10.1108/sr-04-2015-0051.
    • (2016) Sensor Rev , vol.36 , pp. 48-56
    • Ni, J.1    Dong, J.2    Zhang, J.3    Pang, F.4    Cao, W.5    Zhu, Y.6
  • 39
    • 85014595445 scopus 로고    scopus 로고
    • Development of an unmanned aerial vehicle-borne crop-growth monitoring system
    • 28273815
    • Ni J., Yao L., Zhang J., Cao W., Zhu Y., Tai X., (2017). Development of an unmanned aerial vehicle-borne crop-growth monitoring system. Sensors 17:502. 10.3390/s1703050228273815.
    • (2017) Sensors , vol.17 , pp. 502
    • Ni, J.1    Yao, L.2    Zhang, J.3    Cao, W.4    Zhu, Y.5    Tai, X.6
  • 40
    • 1642316116 scopus 로고    scopus 로고
    • Current and potential uses of optical remote sensing in rice-based irrigation systems: a review
    • Niel T. G. V., McVicar T. R., (2004). Current and potential uses of optical remote sensing in rice-based irrigation systems: a review. Austr. J. Agric. Res. 55, 155–185. 10.1071/AR03149.
    • (2004) Austr. J. Agric. Res , vol.55 , pp. 155-185
    • Niel, T.G.V.1    McVicar, T.R.2
  • 41
    • 33746395920 scopus 로고    scopus 로고
    • A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor
    • Noh H., Zhang Q., Shin B., Han S., Feng L., (2006). A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485. 10.1016/j.biosystemseng.2006.04.009.
    • (2006) Biosyst. Eng , vol.94 , pp. 477-485
    • Noh, H.1    Zhang, Q.2    Shin, B.3    Han, S.4    Feng, L.5
  • 42
    • 0001306551 scopus 로고
    • Nitrogen and plant production
    • Novoa R., Loomis R. S., (1981). Nitrogen and plant production. Plant Soil 58, 177–204. 10.1007/BF02180053.
    • (1981) Plant Soil , vol.58 , pp. 177-204
    • Novoa, R.1    Loomis, R.S.2
  • 43
    • 85049207812 scopus 로고    scopus 로고
    • Proximal optical sensors for nitrogen management of vegetable crops: a review
    • 29958482
    • Padilla F. M., Gallardo M., Peña-Fleitas M. T., de Souza R., Thompson R. B., (2018). Proximal optical sensors for nitrogen management of vegetable crops: a review. Sensors 18:2083. 10.3390/s1807208329958482.
    • (2018) Sensors , vol.18 , pp. 2083
    • Padilla, F.M.1    Gallardo, M.2    Peña-Fleitas, M.T.3    de Souza, R.4    Thompson, R.B.5
  • 44
    • 84899631855 scopus 로고    scopus 로고
    • Integrated sensor system for monitoring rice growth conditions based on unmanned ground vehicle system
    • Pei W., Lan Y. B., Luo X. W., Zhou Z. Y., Wang Z. G., Wang Y. H., (2014). Integrated sensor system for monitoring rice growth conditions based on unmanned ground vehicle system. Int. J. Agric. Biol. Eng. 7, 75–81. 10.3965/j.ijabe.20140702.009.
    • (2014) Int. J. Agric. Biol. Eng , vol.7 , pp. 75-81
    • Pei, W.1    Lan, Y.B.2    Luo, X.W.3    Zhou, Z.Y.4    Wang, Z.G.5    Wang, Y.H.6
  • 45
    • 0002872223 scopus 로고
    • Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite)
    • Greenbelt, ON December:, (Accessed June 6, 2018
    • Rouse J. W., Haas R. H., Schell J. A., Deering D. W., (1973). Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite), in Proceedings of Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10–14 December 1973, 309–317. Available at: https://ntrs.nasa.gov/search.jsp?R=19740022614 (Accessed June 6, 2018).
    • (1973) Proceedings of Third Earth Resources Technology Satellite Symposium , vol.1973 , pp. 309-317
    • Rouse, J.W.1    Haas, R.H.2    Schell, J.A.3    Deering, D.W.4
  • 46
    • 84908552883 scopus 로고    scopus 로고
    • A review of optical methods for assessing nitrogen contents during rice growth
    • Saberioon M., Amin M. S. M., Gholizadeh A., Ezri M. H., (2014). A review of optical methods for assessing nitrogen contents during rice growth. Appl. Eng. Agric. 30, 657–669. 10.13031/AEA.30.10478.
    • (2014) Appl. Eng. Agric , vol.30 , pp. 657-669
    • Saberioon, M.1    Amin, M.S.M.2    Gholizadeh, A.3    Ezri, M.H.4
  • 47
    • 84949604727 scopus 로고    scopus 로고
    • On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat
    • Samborski S. M, Gozdowski D., Stepien M., Walsh O. S, Leszczynska E., (2016). On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. Eur. J. Agron. 74, 56–67. 10.1016/j.eja.2015.11.020.
    • (2016) Eur. J. Agron , vol.74 , pp. 56-67
    • Samborski, S.M.1    Gozdowski, D.2    Stepien, M.3    Walsh, O.S.4    Leszczynska, E.5
  • 48
    • 85028613788 scopus 로고    scopus 로고
    • Characterization of the aerodynamic ground effect and its influence in multirotor control
    • Sanchez-Cuevas P., Heredia G., Ollero A., (2017). Characterization of the aerodynamic ground effect and its influence in multirotor control. Int. J. Aerospace Eng. 2017, 1–17. 10.1155/2017/1823056.
    • (2017) Int. J. Aerospace Eng , vol.2017 , pp. 1-17
    • Sanchez-Cuevas, P.1    Heredia, G.2    Ollero, A.3
  • 49
    • 85022329720 scopus 로고    scopus 로고
    • Regression kriging for improving crop height models fusing ultra-sonic sensing with UAV imagery
    • Schirrmann M., Hamdorf A., Giebel A., Gleiniger F., Pflanz M., Dammer K.-H., (2017). Regression kriging for improving crop height models fusing ultra-sonic sensing with UAV imagery. Remote Sens. 9:665. 10.3390/RS9070665.
    • (2017) Remote Sens , vol.9 , pp. 665
    • Schirrmann, M.1    Hamdorf, A.2    Giebel, A.3    Gleiniger, F.4    Pflanz, M.5    Dammer, K.-H.6
  • 50
    • 84960468004 scopus 로고    scopus 로고
    • Evaluating a crop circle active canopy sensor-based precision nitrogen management strategy for rice in Northeast China
    • Istanbul, 20-24 July
    • Shi W., Lu J., Miao Y., Cao Q., Shen J., Wang H.. (2015). Evaluating a crop circle active canopy sensor-based precision nitrogen management strategy for rice in Northeast China, in 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics), Istanbul, 20-24 July 2015, 261–264. 10.1109/Agro-Geoinformatics.2015.7248112.
    • (2015) 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics) , vol.2015 , pp. 261-264
    • Shi, W.1    Lu, J.2    Miao, Y.3    Cao, Q.4    Shen, J.5    Wang, H.6
  • 51
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • Shmueli G., (2010). To explain or to predict? Stat. Sci. 25, 289–310. 10.1214/10-STS330.
    • (2010) Stat. Sci , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 53
    • 77952010835 scopus 로고    scopus 로고
    • Comparison of passive and active canopy sensors for the estimation of vine biomass production
    • Stamatiadis S., Taskos D., Tsadila E., Christofides C., Tsadilas C., Schepers J. S., (2010). Comparison of passive and active canopy sensors for the estimation of vine biomass production. Precision Agric. 11, 306–315. 10.1007/S11119-009-9131-3.
    • (2010) Precision Agric , vol.11 , pp. 306-315
    • Stamatiadis, S.1    Taskos, D.2    Tsadila, E.3    Christofides, C.4    Tsadilas, C.5    Schepers, J.S.6
  • 54
    • 0033970477 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and their relationships with agricultural characteristics
    • Thenkabail P. S., Smith R. B., Pauw E. D., (2000). Hyperspectral vegetation indices and their relationships with agricultural characteristics. Remote Sens. Environ. 71, 158–182. 10.1016/S0034-4257(99)00067-X.
    • (2000) Remote Sens. Environ , vol.71 , pp. 158-182
    • Thenkabail, P.S.1    Smith, R.B.2    Pauw, E.D.3
  • 55
    • 85027931921 scopus 로고    scopus 로고
    • Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    • Tian Y.-C., Gu K.-J., Chu X., Yao X., Cao W.-X., Zhu Y., (2014). Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 376, 193–209. 10.1007/s11104-013-1937-0.
    • (2014) Plant Soil , vol.376 , pp. 193-209
    • Tian, Y.-C.1    Gu, K.-J.2    Chu, X.3    Yao, X.4    Cao, W.-X.5    Zhu, Y.6
  • 56
    • 84874701048 scopus 로고    scopus 로고
    • Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines
    • Wang F., Huang J., Wang Y., Liu Z., Zhang F., (2013). Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines. Precision Agric. 14, 172–183. 10.1007/s11119-012-9285-2.
    • (2013) Precision Agric , vol.14 , pp. 172-183
    • Wang, F.1    Huang, J.2    Wang, Y.3    Liu, Z.4    Zhang, F.5
  • 58
    • 85026443520 scopus 로고    scopus 로고
    • Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives
    • 28713402
    • Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H.. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 8:1111. 10.3389/fpls.2017.0111128713402.
    • (2017) Front. Plant Sci , vol.8 , pp. 1111
    • Yang, G.1    Liu, J.2    Zhao, C.3    Li, Z.4    Huang, Y.5    Yu, H.6
  • 59
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: a review
    • Zhang C., Kovacs J. M., (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13, 693–712. 10.1007/s11119-012-9274-5.
    • (2012) Precis. Agric , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 60
    • 85021090732 scopus 로고    scopus 로고
    • Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery
    • Zhou X., Zheng H. B., Xu X. Q., He J. Y., Ge X. K., Yao X.. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogrammetry Remote Sens. 130, 246–255. 10.1016/j.isprsjprs.2017.05.003.
    • (2017) ISPRS J. Photogrammetry Remote Sens , vol.130 , pp. 246-255
    • Zhou, X.1    Zheng, H.B.2    Xu, X.Q.3    He, J.Y.4    Ge, X.K.5    Yao, X.6
  • 61
    • 85037680931 scopus 로고    scopus 로고
    • Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato
    • Zhou Z., Jabloun M., Plauborg F., Andersen M. N., (2018). Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato. Comput. Electron. Agric. 144, 154–163. 10.1016/j.compag.2017.12.005.
    • (2018) Comput. Electron. Agric , vol.144 , pp. 154-163
    • Zhou, Z.1    Jabloun, M.2    Plauborg, F.3    Andersen, M.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.