-
1
-
-
84937246562
-
Ten years of pedestrian detection, what have we learned?
-
abs/1411.4304
-
R. Benenson, M. Omran, J. H. Hosang, and B. Schiele. Ten years of pedestrian detection, what have we learned? CoRR, abs/1411.4304, 2014.
-
(2014)
CoRR
-
-
Benenson, R.1
Omran, M.2
Hosang, J.H.3
Schiele, B.4
-
2
-
-
85051118992
-
Crowdnet: A deep convolutional network for dense crowd counting
-
L. Boominathan, S. S. Kruthiventi, and R. V. Babu. Crowdnet: A deep convolutional network for dense crowd counting. In ACM MM, 2016.
-
(2016)
ACM MM
-
-
Boominathan, L.1
Kruthiventi, S.S.2
Babu, R.V.3
-
3
-
-
51949104316
-
Privacy preserving crowd monitoring: Counting people without people models or tracking
-
A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In CVPR, 2008.
-
(2008)
CVPR
-
-
Chan, A.B.1
Liang, Z.-S.J.2
Vasconcelos, N.3
-
4
-
-
77953177412
-
Bayesian poisson regression for crowd counting
-
A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In ICCV, 2009.
-
(2009)
ICCV
-
-
Chan, A.B.1
Vasconcelos, N.2
-
6
-
-
84898455547
-
Feature mining for localised crowd counting
-
K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting. In BMVC, 2012.
-
(2012)
BMVC
-
-
Chen, K.1
Loy, C.C.2
Gong, S.3
Xiang, T.4
-
7
-
-
85018938177
-
R-fcn: Object detection via region-based fully convolutional networks
-
J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
8
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
9
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
11
-
-
80053120334
-
Hough forests for object detection, tracking, and action recognition
-
J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. TPAMI, 2011.
-
(2011)
TPAMI
-
-
Gall, J.1
Yao, A.2
Razavi, N.3
Van Gool, L.4
Lempitsky, V.5
-
12
-
-
84986626310
-
People counting based on head detection combining adaboost and cnn in crowded surveillance environment
-
C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang. People counting based on head detection combining adaboost and cnn in crowded surveillance environment. Neurocomputing, 2016.
-
(2016)
Neurocomputing
-
-
Gao, C.1
Li, P.2
Zhang, Y.3
Liu, J.4
Wang, L.5
-
13
-
-
70450161263
-
Marked point processes for crowd counting
-
W. Ge and R. T. Collins. Marked point processes for crowd counting. In CVPR, 2009.
-
(2009)
CVPR
-
-
Ge, W.1
Collins, R.T.2
-
14
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
15
-
-
84887356947
-
Multi-source multi-scale counting in extremely dense crowd images
-
H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale counting in extremely dense crowd images. In CVPR, 2013.
-
(2013)
CVPR
-
-
Idrees, H.1
Saleemi, I.2
Seibert, C.3
Shah, M.4
-
16
-
-
85041910638
-
-
arXiv preprint arXiv: 1705.10118
-
D. Kang, Z. Ma, and A. B. Chan. Beyond counting: Comparisons of density maps for crowd analysis tasks-counting, detection, and tracking. ArXiv preprint arXiv: 1705.10118, 2017.
-
(2017)
Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks-counting, Detection, and Tracking.
-
-
Kang, D.1
Ma, Z.2
Chan, A.B.3
-
18
-
-
33744792263
-
Pedestrian detection in crowded scenes
-
IEEE
-
B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In CVPR, volume 1, pages 878-885. IEEE, 2005.
-
(2005)
CVPR
, vol.1
, pp. 878
-
-
Leibe, B.1
Seemann, E.2
Schiele, B.3
-
19
-
-
85162384490
-
Learning to count objects in images
-
V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
-
(2010)
NIPS
-
-
Lempitsky, V.1
Zisserman, A.2
-
20
-
-
0035521284
-
Estimation of number of people in crowded scenes using perspective transformation
-
S.-F. Lin, J.-Y. Chen, and H.-X. Chao. Estimation of number of people in crowded scenes using perspective transformation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2001.
-
(2001)
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
-
-
Lin, S.-F.1
Chen, J.-Y.2
Chao, H.-X.3
-
22
-
-
85021624882
-
Towards perspective-free object counting with deep learning
-
D. Onoro-Rubio and R. J. López-Sastre. Towards perspective-free object counting with deep learning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Onoro-Rubio, D.1
López-Sastre, R.J.2
-
23
-
-
84973926598
-
Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation
-
V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Pham, V.-Q.1
Kozakaya, T.2
Yamaguchi, O.3
Okada, R.4
-
24
-
-
84986308404
-
You only look once: Unified, real-time object detection
-
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016.
-
(2016)
CVPR
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
25
-
-
84960980241
-
Faster R-CNN: Towards real-Time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-Time object detection with region proposal networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
27
-
-
34948834722
-
Detecting pedestrians by learning shapelet features
-
P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. In CVPR, 2007.
-
(2007)
CVPR
-
-
Sabzmeydani, P.1
Mori, G.2
-
28
-
-
85042131716
-
Switching convolutional neural network for crowd counting
-
D. B. Sam, S. Surya, and R. V. Babu. Switching convolutional neural network for crowd counting. In CVPR, 2017.
-
(2017)
CVPR
-
-
Sam, D.B.1
Surya, S.2
Babu, R.V.3
-
29
-
-
85006810957
-
End-To-end crowd counting via joint learning local and global count
-
C. Shang, H. Ai, and B. Bai. End-To-end crowd counting via joint learning local and global count. In ICIP, 2016.
-
(2016)
ICIP
-
-
Shang, C.1
Ai, H.2
Bai, B.3
-
30
-
-
85062890550
-
Crowd counting via weighted vlad on dense attribute feature maps
-
B. Sheng, C. Shen, G. Lin, J. Li, W. Yang, and C. Sun. Crowd counting via weighted vlad on dense attribute feature maps. TCVST, 2016.
-
(2016)
TCVST
-
-
Sheng, B.1
Shen, C.2
Lin, G.3
Li, J.4
Yang, W.5
Sun, C.6
-
31
-
-
85041900822
-
Generating high-quality crowd density maps using contextual pyramid cnns
-
V. A. Sindagi and V. M. Patel. Generating high-quality crowd density maps using contextual pyramid cnns. In ICCV, 2017.
-
(2017)
ICCV
-
-
Sindagi, V.A.1
Patel, V.M.2
-
32
-
-
85046411945
-
A survey of recent advances in cnn-based single image crowd counting and density estimation
-
V. A. Sindagi and V. M. Patel. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 2017.
-
(2017)
Pattern Recognition Letters
-
-
Sindagi, V.A.1
Patel, V.M.2
-
34
-
-
0344983340
-
Detecting pedestrians using patterns of motion and appearance
-
P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. In ICCV, 2003.
-
(2003)
ICCV
-
-
Viola, P.1
Jones, M.J.2
Snow, D.3
-
35
-
-
85021647719
-
Learning to count with cnn boosting
-
E.Walach and L.Wolf. Learning to count with cnn boosting. In ECCV, 2016.
-
(2016)
ECCV
-
-
Walach, E.1
Wolf, L.2
-
36
-
-
85051127295
-
Deep people counting in extremely dense crowds
-
C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao. Deep people counting in extremely dense crowds. In ACM MM, 2015.
-
(2015)
ACM MM
-
-
Wang, C.1
Zhang, H.2
Yang, L.3
Liu, S.4
Cao, X.5
-
37
-
-
85019143464
-
A novel learningbased frame pooling method for event detection
-
L. Wang, C. Gao, J. Liu, and D. Meng. A novel learningbased frame pooling method for event detection. Signal Processing, 2017.
-
(2017)
Signal Processing
-
-
Wang, L.1
Gao, C.2
Liu, J.3
Meng, D.4
-
38
-
-
85006797227
-
Fast visual object counting via example-based density estimation
-
Y. Wang and Y. Zou. Fast visual object counting via example-based density estimation. In ICIP, 2016.
-
(2016)
ICIP
-
-
Wang, Y.1
Zou, Y.2
-
39
-
-
34548102203
-
Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
-
B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. IJCV, 2007.
-
(2007)
IJCV
-
-
Wu, B.1
Nevatia, R.2
-
40
-
-
84977634849
-
Crowd density estimation based on rich features and random projection forest
-
B. Xu and G. Qiu. Crowd density estimation based on rich features and random projection forest. In WACV, 2016.
-
(2016)
WACV
-
-
Xu, B.1
Qiu, G.2
-
41
-
-
84959214343
-
Cross-scene crowd counting via deep convolutional neural networks
-
C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
42
-
-
84986278309
-
Singleimage crowd counting via multi-column convolutional neural network
-
Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Singleimage crowd counting via multi-column convolutional neural network. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhang, Y.1
Zhou, D.2
Chen, S.3
Gao, S.4
Ma, Y.5
-
43
-
-
45349088897
-
Segmentation and tracking of multiple humans in crowded environments
-
T. Zhao, R. Nevatia, and B. Wu. Segmentation and tracking of multiple humans in crowded environments. TPAMI, 2008.
-
(2008)
TPAMI
-
-
Zhao, T.1
Nevatia, R.2
Wu, B.3
|