메뉴 건너뛰기




Volumn , Issue , 2018, Pages 5197-5206

DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING; PATTERN RECOGNITION; SOFTWARE ENGINEERING;

EID: 85058540236     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00545     Document Type: Conference Paper
Times cited : (461)

References (43)
  • 1
    • 84937246562 scopus 로고    scopus 로고
    • Ten years of pedestrian detection, what have we learned?
    • abs/1411.4304
    • R. Benenson, M. Omran, J. H. Hosang, and B. Schiele. Ten years of pedestrian detection, what have we learned? CoRR, abs/1411.4304, 2014.
    • (2014) CoRR
    • Benenson, R.1    Omran, M.2    Hosang, J.H.3    Schiele, B.4
  • 2
    • 85051118992 scopus 로고    scopus 로고
    • Crowdnet: A deep convolutional network for dense crowd counting
    • L. Boominathan, S. S. Kruthiventi, and R. V. Babu. Crowdnet: A deep convolutional network for dense crowd counting. In ACM MM, 2016.
    • (2016) ACM MM
    • Boominathan, L.1    Kruthiventi, S.S.2    Babu, R.V.3
  • 3
    • 51949104316 scopus 로고    scopus 로고
    • Privacy preserving crowd monitoring: Counting people without people models or tracking
    • A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In CVPR, 2008.
    • (2008) CVPR
    • Chan, A.B.1    Liang, Z.-S.J.2    Vasconcelos, N.3
  • 4
    • 77953177412 scopus 로고    scopus 로고
    • Bayesian poisson regression for crowd counting
    • A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In ICCV, 2009.
    • (2009) ICCV
    • Chan, A.B.1    Vasconcelos, N.2
  • 6
    • 84898455547 scopus 로고    scopus 로고
    • Feature mining for localised crowd counting
    • K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting. In BMVC, 2012.
    • (2012) BMVC
    • Chen, K.1    Loy, C.C.2    Gong, S.3    Xiang, T.4
  • 7
    • 85018938177 scopus 로고    scopus 로고
    • R-fcn: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In NIPS, 2016.
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84857435937 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 2012.
    • (2012) TPAMI
    • Dollar, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 11
    • 80053120334 scopus 로고    scopus 로고
    • Hough forests for object detection, tracking, and action recognition
    • J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. TPAMI, 2011.
    • (2011) TPAMI
    • Gall, J.1    Yao, A.2    Razavi, N.3    Van Gool, L.4    Lempitsky, V.5
  • 12
    • 84986626310 scopus 로고    scopus 로고
    • People counting based on head detection combining adaboost and cnn in crowded surveillance environment
    • C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang. People counting based on head detection combining adaboost and cnn in crowded surveillance environment. Neurocomputing, 2016.
    • (2016) Neurocomputing
    • Gao, C.1    Li, P.2    Zhang, Y.3    Liu, J.4    Wang, L.5
  • 13
    • 70450161263 scopus 로고    scopus 로고
    • Marked point processes for crowd counting
    • W. Ge and R. T. Collins. Marked point processes for crowd counting. In CVPR, 2009.
    • (2009) CVPR
    • Ge, W.1    Collins, R.T.2
  • 14
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 15
    • 84887356947 scopus 로고    scopus 로고
    • Multi-source multi-scale counting in extremely dense crowd images
    • H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale counting in extremely dense crowd images. In CVPR, 2013.
    • (2013) CVPR
    • Idrees, H.1    Saleemi, I.2    Seibert, C.3    Shah, M.4
  • 18
    • 33744792263 scopus 로고    scopus 로고
    • Pedestrian detection in crowded scenes
    • IEEE
    • B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In CVPR, volume 1, pages 878-885. IEEE, 2005.
    • (2005) CVPR , vol.1 , pp. 878
    • Leibe, B.1    Seemann, E.2    Schiele, B.3
  • 19
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
    • (2010) NIPS
    • Lempitsky, V.1    Zisserman, A.2
  • 22
    • 85021624882 scopus 로고    scopus 로고
    • Towards perspective-free object counting with deep learning
    • D. Onoro-Rubio and R. J. López-Sastre. Towards perspective-free object counting with deep learning. In ECCV, 2016.
    • (2016) ECCV
    • Onoro-Rubio, D.1    López-Sastre, R.J.2
  • 23
    • 84973926598 scopus 로고    scopus 로고
    • Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation
    • V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In ICCV, 2015.
    • (2015) ICCV
    • Pham, V.-Q.1    Kozakaya, T.2    Yamaguchi, O.3    Okada, R.4
  • 24
    • 84986308404 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection
    • J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016.
    • (2016) CVPR
    • Redmon, J.1    Divvala, S.2    Girshick, R.3    Farhadi, A.4
  • 25
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-Time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-Time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 27
    • 34948834722 scopus 로고    scopus 로고
    • Detecting pedestrians by learning shapelet features
    • P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. In CVPR, 2007.
    • (2007) CVPR
    • Sabzmeydani, P.1    Mori, G.2
  • 28
    • 85042131716 scopus 로고    scopus 로고
    • Switching convolutional neural network for crowd counting
    • D. B. Sam, S. Surya, and R. V. Babu. Switching convolutional neural network for crowd counting. In CVPR, 2017.
    • (2017) CVPR
    • Sam, D.B.1    Surya, S.2    Babu, R.V.3
  • 29
    • 85006810957 scopus 로고    scopus 로고
    • End-To-end crowd counting via joint learning local and global count
    • C. Shang, H. Ai, and B. Bai. End-To-end crowd counting via joint learning local and global count. In ICIP, 2016.
    • (2016) ICIP
    • Shang, C.1    Ai, H.2    Bai, B.3
  • 30
    • 85062890550 scopus 로고    scopus 로고
    • Crowd counting via weighted vlad on dense attribute feature maps
    • B. Sheng, C. Shen, G. Lin, J. Li, W. Yang, and C. Sun. Crowd counting via weighted vlad on dense attribute feature maps. TCVST, 2016.
    • (2016) TCVST
    • Sheng, B.1    Shen, C.2    Lin, G.3    Li, J.4    Yang, W.5    Sun, C.6
  • 31
    • 85041900822 scopus 로고    scopus 로고
    • Generating high-quality crowd density maps using contextual pyramid cnns
    • V. A. Sindagi and V. M. Patel. Generating high-quality crowd density maps using contextual pyramid cnns. In ICCV, 2017.
    • (2017) ICCV
    • Sindagi, V.A.1    Patel, V.M.2
  • 32
    • 85046411945 scopus 로고    scopus 로고
    • A survey of recent advances in cnn-based single image crowd counting and density estimation
    • V. A. Sindagi and V. M. Patel. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 2017.
    • (2017) Pattern Recognition Letters
    • Sindagi, V.A.1    Patel, V.M.2
  • 34
    • 0344983340 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. In ICCV, 2003.
    • (2003) ICCV
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 35
    • 85021647719 scopus 로고    scopus 로고
    • Learning to count with cnn boosting
    • E.Walach and L.Wolf. Learning to count with cnn boosting. In ECCV, 2016.
    • (2016) ECCV
    • Walach, E.1    Wolf, L.2
  • 36
    • 85051127295 scopus 로고    scopus 로고
    • Deep people counting in extremely dense crowds
    • C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao. Deep people counting in extremely dense crowds. In ACM MM, 2015.
    • (2015) ACM MM
    • Wang, C.1    Zhang, H.2    Yang, L.3    Liu, S.4    Cao, X.5
  • 37
    • 85019143464 scopus 로고    scopus 로고
    • A novel learningbased frame pooling method for event detection
    • L. Wang, C. Gao, J. Liu, and D. Meng. A novel learningbased frame pooling method for event detection. Signal Processing, 2017.
    • (2017) Signal Processing
    • Wang, L.1    Gao, C.2    Liu, J.3    Meng, D.4
  • 38
    • 85006797227 scopus 로고    scopus 로고
    • Fast visual object counting via example-based density estimation
    • Y. Wang and Y. Zou. Fast visual object counting via example-based density estimation. In ICIP, 2016.
    • (2016) ICIP
    • Wang, Y.1    Zou, Y.2
  • 39
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. IJCV, 2007.
    • (2007) IJCV
    • Wu, B.1    Nevatia, R.2
  • 40
    • 84977634849 scopus 로고    scopus 로고
    • Crowd density estimation based on rich features and random projection forest
    • B. Xu and G. Qiu. Crowd density estimation based on rich features and random projection forest. In WACV, 2016.
    • (2016) WACV
    • Xu, B.1    Qiu, G.2
  • 41
    • 84959214343 scopus 로고    scopus 로고
    • Cross-scene crowd counting via deep convolutional neural networks
    • C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, C.1    Li, H.2    Wang, X.3    Yang, X.4
  • 42
    • 84986278309 scopus 로고    scopus 로고
    • Singleimage crowd counting via multi-column convolutional neural network
    • Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Singleimage crowd counting via multi-column convolutional neural network. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, Y.1    Zhou, D.2    Chen, S.3    Gao, S.4    Ma, Y.5
  • 43
    • 45349088897 scopus 로고    scopus 로고
    • Segmentation and tracking of multiple humans in crowded environments
    • T. Zhao, R. Nevatia, and B. Wu. Segmentation and tracking of multiple humans in crowded environments. TPAMI, 2008.
    • (2008) TPAMI
    • Zhao, T.1    Nevatia, R.2    Wu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.