메뉴 건너뛰기




Volumn 156, Issue , 2019, Pages 585-605

Current and future applications of statistical machine learning algorithms for agricultural machine vision systems

Author keywords

Discriminant analysis; Fuzzy clustering; Gaussian mixture model; K means clustering; k Nearest Neighbour; Machine vision; Na ve Bayes; Statistical machine learning; Support vector machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; COST EFFECTIVENESS; CROPS; CULTIVATION; DISCRIMINANT ANALYSIS; FUZZY CLUSTERING; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS; MACHINERY; NEAREST NEIGHBOR SEARCH; SPECTRUM ANALYSIS; STATISTICS; SUPPORT VECTOR MACHINES;

EID: 85058223118     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2018.12.006     Document Type: Review
Times cited : (302)

References (210)
  • 3
    • 84863671281 scopus 로고    scopus 로고
    • Classification of crops and weeds from digital images: a support vector machine approach
    • Ahmed, F., Al-Mamun, H.A., Bari, A.H., Hossain, E., Kwan, P., Classification of crops and weeds from digital images: a support vector machine approach. Crop Prot. 40 (2012), 98–104.
    • (2012) Crop Prot. , vol.40 , pp. 98-104
    • Ahmed, F.1    Al-Mamun, H.A.2    Bari, A.H.3    Hossain, E.4    Kwan, P.5
  • 4
    • 78651358531 scopus 로고    scopus 로고
    • Detection and classification of leaf diseases using K-means-based segmentation and Neural-network based classification
    • Al Bashish, D., Braik, M., Bani-Ahmad, S., Detection and classification of leaf diseases using K-means-based segmentation and Neural-network based classification. Inform. Technol. J. 10:2 (2011), 267–275.
    • (2011) Inform. Technol. J. , vol.10 , Issue.2 , pp. 267-275
    • Al Bashish, D.1    Braik, M.2    Bani-Ahmad, S.3
  • 5
    • 84880150444 scopus 로고    scopus 로고
    • Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features
    • Arivazhagan, S., Shebiah, R.N., Ananthi, S., Varthini, S.V., Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int.: CIGR J. 15:1 (2013), 211–217.
    • (2013) Agric. Eng. Int.: CIGR J. , vol.15 , Issue.1 , pp. 211-217
    • Arivazhagan, S.1    Shebiah, R.N.2    Ananthi, S.3    Varthini, S.V.4
  • 8
    • 0036645195 scopus 로고    scopus 로고
    • An agricultural mobile robot with vision-based perception for mechanical weed control
    • Åstrand, B., Baerveldt, A., An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots 13:1 (2002), 21–35.
    • (2002) Autonomous Robots , vol.13 , Issue.1 , pp. 21-35
    • Åstrand, B.1    Baerveldt, A.2
  • 10
    • 84884362657 scopus 로고    scopus 로고
    • Crop segmentation from images by morphology modeling in the CIE L* a* b* color space
    • Bai, X., Cao, Z., Wang, Y., Yu, Z., Zhang, X., Li, C., Crop segmentation from images by morphology modeling in the CIE L* a* b* color space. Comput. Electron. Agric. 99 (2013), 21–34.
    • (2013) Comput. Electron. Agric. , vol.99 , pp. 21-34
    • Bai, X.1    Cao, Z.2    Wang, Y.3    Yu, Z.4    Zhang, X.5    Li, C.6
  • 11
    • 84910644665 scopus 로고    scopus 로고
    • Performance evaluation of various statistical classifiers in detecting the diseased citrus leaves
    • Bandi, S.R., Varadharajan, A., Chinnasamy, A., Performance evaluation of various statistical classifiers in detecting the diseased citrus leaves. Int. J. Eng. Sci. Technol. 5:2 (2013), 298–307.
    • (2013) Int. J. Eng. Sci. Technol. , vol.5 , Issue.2 , pp. 298-307
    • Bandi, S.R.1    Varadharajan, A.2    Chinnasamy, A.3
  • 12
    • 79955798770 scopus 로고    scopus 로고
    • The potential of automatic methods of classification to identify leaf diseases from multispectral images
    • Bauer, S.D., Korč F., Förstner, W., The potential of automatic methods of classification to identify leaf diseases from multispectral images. Precis. Agric. 12:3 (2011), 361–377.
    • (2011) Precis. Agric. , vol.12 , Issue.3 , pp. 361-377
    • Bauer, S.D.1    Korč, F.2    Förstner, W.3
  • 13
    • 84978289451 scopus 로고    scopus 로고
    • Agricultural robots for field operations: concepts and components
    • Bechar, A., Vigneault, C., Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149 (2016), 94–111.
    • (2016) Biosyst. Eng. , vol.149 , pp. 94-111
    • Bechar, A.1    Vigneault, C.2
  • 14
    • 85028199288 scopus 로고    scopus 로고
    • A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
    • Behmann, J., Mahlein, A.K., Rumpf, T., Römer, C., Plümer, L., A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 16:3 (2015), 239–260.
    • (2015) Precis. Agric. , vol.16 , Issue.3 , pp. 239-260
    • Behmann, J.1    Mahlein, A.K.2    Rumpf, T.3    Römer, C.4    Plümer, L.5
  • 15
    • 13444278799 scopus 로고    scopus 로고
    • Unsupervised colour image segmentation applied to printing quality assessment
    • Bergman, L., Verikas, A., Bacauskiene, M., Unsupervised colour image segmentation applied to printing quality assessment. Image Vis. Comput. 23:4 (2005), 417–425.
    • (2005) Image Vis. Comput. , vol.23 , Issue.4 , pp. 417-425
    • Bergman, L.1    Verikas, A.2    Bacauskiene, M.3
  • 16
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • Bezdek, J.C., Ehrlich, R., Full, W., FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10:2–3 (1984), 191–203.
    • (1984) Comput. Geosci. , vol.10 , Issue.2-3 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 17
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning (Information Science and Statistics)
    • 2006. corr. 2nd printing edn. first ed. Springer New York
    • Bishop, C., Pattern Recognition and Machine Learning (Information Science and Statistics). 2006. corr. 2nd printing edn. first ed., 2007, Springer, New York.
    • (2007)
    • Bishop, C.1
  • 18
    • 34447278148 scopus 로고    scopus 로고
    • Citrus sorting by identification of the most common defects using multispectral computer vision
    • Blasco, J., Aleixos, N., Gómez, J., Moltó E., Citrus sorting by identification of the most common defects using multispectral computer vision. J. Food Eng. 83:3 (2007), 384–393.
    • (2007) J. Food Eng. , vol.83 , Issue.3 , pp. 384-393
    • Blasco, J.1    Aleixos, N.2    Gómez, J.3    Moltó, E.4
  • 19
    • 61449157629 scopus 로고    scopus 로고
    • Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features
    • Blasco, J., Aleixos, N., Cubero, S., Gómez-Sanchís, J., Moltó E., Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Comput. Electron. Agric. 66:1 (2009), 1–8.
    • (2009) Comput. Electron. Agric. , vol.66 , Issue.1 , pp. 1-8
    • Blasco, J.1    Aleixos, N.2    Cubero, S.3    Gómez-Sanchís, J.4    Moltó, E.5
  • 20
    • 48749114272 scopus 로고    scopus 로고
    • Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision
    • Blasco, J., Cubero, S., Gómez-Sanchís, J., Mira, P., Moltó E., Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. J. Food Eng. 90:1 (2009), 27–34.
    • (2009) J. Food Eng. , vol.90 , Issue.1 , pp. 27-34
    • Blasco, J.1    Cubero, S.2    Gómez-Sanchís, J.3    Mira, P.4    Moltó, E.5
  • 21
    • 85058213608 scopus 로고    scopus 로고
    • Hidden Markov Models. Lecture notes, August, 15(18-19), 48.
    • Blunsom, P. (2004). Hidden Markov Models. Lecture notes, August, 15(18-19), 48.
    • (2004)
    • Blunsom, P.1
  • 23
    • 0036159625 scopus 로고    scopus 로고
    • Identifying potential within-field management zones from cotton-yield estimates
    • Boydell, B., McBratney, A., Identifying potential within-field management zones from cotton-yield estimates. Precis. Agric. 3:1 (2002), 9–23.
    • (2002) Precis. Agric. , vol.3 , Issue.1 , pp. 9-23
    • Boydell, B.1    McBratney, A.2
  • 25
    • 12744277999 scopus 로고    scopus 로고
    • Development of a real-time machine vision system for the apple harvesting robot
    • August IEEE
    • Bulanon, D.M., Kataoka, T., Okamoto, H., Hata, S.I., Development of a real-time machine vision system for the apple harvesting robot. August SICE 2004 Annual Conference, 2004, IEEE, 595–598.
    • (2004) SICE 2004 Annual Conference , pp. 595-598
    • Bulanon, D.M.1    Kataoka, T.2    Okamoto, H.3    Hata, S.I.4
  • 26
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J., A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2:2 (1998), 121–167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 27
    • 0034163651 scopus 로고    scopus 로고
    • Classification of weed species using color texture features and discriminant analysis
    • Burks, T., Shearer, S., Payne, F., Classification of weed species using color texture features and discriminant analysis. Trans. ASAE, 43(2), 2000, 441.
    • (2000) Trans. ASAE , vol.43 , Issue.2 , pp. 441
    • Burks, T.1    Shearer, S.2    Payne, F.3
  • 28
    • 84884730074 scopus 로고    scopus 로고
    • A plant recognition approach using shape and color features in leaf images
    • Springer Berlin, Heidelberg
    • Caglayan, A., Guclu, O., Can, A.B., A plant recognition approach using shape and color features in leaf images. International Conference on Image Analysis and Processing, 2013, Springer, Berlin, Heidelberg, 161–170.
    • (2013) International Conference on Image Analysis and Processing , pp. 161-170
    • Caglayan, A.1    Guclu, O.2    Can, A.B.3
  • 29
    • 63149166446 scopus 로고    scopus 로고
    • Image pattern classification for the identification of disease causing agents in plants
    • Camargo, A., Smith, J.S., Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric. 66:2 (2009), 121–125.
    • (2009) Comput. Electron. Agric. , vol.66 , Issue.2 , pp. 121-125
    • Camargo, A.1    Smith, J.S.2
  • 30
    • 18644380341 scopus 로고    scopus 로고
    • A method to quantify weed distribution for relating to patch spraying systems
    • Carroll, J., Holden, N., A method to quantify weed distribution for relating to patch spraying systems. Trans. ASAE 48:1 (2005), 27–35.
    • (2005) Trans. ASAE , vol.48 , Issue.1 , pp. 27-35
    • Carroll, J.1    Holden, N.2
  • 31
    • 0023435224 scopus 로고
    • A measure of similarity for cellular maps
    • Carstensen, L.W. Jr, A measure of similarity for cellular maps. Am. Cartogr. 14:4 (1987), 345–358.
    • (1987) Am. Cartogr. , vol.14 , Issue.4 , pp. 345-358
    • Carstensen, L.W.1
  • 32
    • 84932111493 scopus 로고    scopus 로고
    • Development of a wireless computer vision instrument to detect biotic stress in wheat
    • Casanova, J.J., O'Shaughnessy, S.A., Evett, S.R., Rush, C.M., Development of a wireless computer vision instrument to detect biotic stress in wheat. Sensors 14:9 (2014), 17753–17769.
    • (2014) Sensors , vol.14 , Issue.9 , pp. 17753-17769
    • Casanova, J.J.1    O'Shaughnessy, S.A.2    Evett, S.R.3    Rush, C.M.4
  • 33
    • 84944145592 scopus 로고    scopus 로고
    • Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification
    • Cen, H., Lu, R., Zhu, Q., Mendoza, F., Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification. Postharvest Biol. Technol. 111 (2016), 352–361.
    • (2016) Postharvest Biol. Technol. , vol.111 , pp. 352-361
    • Cen, H.1    Lu, R.2    Zhu, Q.3    Mendoza, F.4
  • 34
    • 84863469943 scopus 로고    scopus 로고
    • Development of color co-occurrence matrix based machine vision algorithms for wild blueberry fields
    • Chang, Y.K., Zaman, Q.U., Schumann, A.W., Percival, D.C., Esau, T.J., Ayalew, G., Development of color co-occurrence matrix based machine vision algorithms for wild blueberry fields. Appl. Eng. Agric. 28:3 (2012), 315–323.
    • (2012) Appl. Eng. Agric. , vol.28 , Issue.3 , pp. 315-323
    • Chang, Y.K.1    Zaman, Q.U.2    Schumann, A.W.3    Percival, D.C.4    Esau, T.J.5    Ayalew, G.6
  • 35
    • 85051611753 scopus 로고    scopus 로고
    • Current and future applications of Cost-Effective Smart Cameras in Agriculture
    • CRC Press, Taylor and Francis Group USA
    • Chang, Y.K., Rehman, T., Current and future applications of Cost-Effective Smart Cameras in Agriculture. Robotics and Mechatronics in Agriculture, 2018, CRC Press, Taylor and Francis Group, USA, 75–121.
    • (2018) Robotics and Mechatronics in Agriculture , pp. 75-121
    • Chang, Y.K.1    Rehman, T.2
  • 36
    • 76349088270 scopus 로고    scopus 로고
    • Combining discriminant analysis and neural networks for corn variety identification
    • Chen, X., Xun, Y., Li, W., Zhang, J., Combining discriminant analysis and neural networks for corn variety identification. Comput. Electron. Agric. 71 (2010), S48–S53.
    • (2010) Comput. Electron. Agric. , vol.71 , pp. S48-S53
    • Chen, X.1    Xun, Y.2    Li, W.3    Zhang, J.4
  • 37
    • 84940007286 scopus 로고    scopus 로고
    • A novel texture feature based multiple classifier technique for roadside vegetation classification
    • Chowdhury, S., Verma, B., Stockwell, D., A novel texture feature based multiple classifier technique for roadside vegetation classification. Expert Syst. Appl. 42:12 (2015), 5047–5055.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.12 , pp. 5047-5055
    • Chowdhury, S.1    Verma, B.2    Stockwell, D.3
  • 39
    • 0021385988 scopus 로고
    • Segmentation of a high-resolution urban scene using texture operators
    • Conners, R.W., Trivedi, M.M., Harlow, C.A., Segmentation of a high-resolution urban scene using texture operators. Computer Vis. Graph. Image Process. 25:3 (1984), 273–310.
    • (1984) Computer Vis. Graph. Image Process. , vol.25 , Issue.3 , pp. 273-310
    • Conners, R.W.1    Trivedi, M.M.2    Harlow, C.A.3
  • 40
    • 84880336214 scopus 로고    scopus 로고
    • Subfield management class delineation using cluster analysis from spatial principal components of soil variables
    • Córdoba, M., Bruno, C., Costa, J., Balzarini, M., Subfield management class delineation using cluster analysis from spatial principal components of soil variables. Comput. Electron. Agric. 97 (2013), 6–14.
    • (2013) Comput. Electron. Agric. , vol.97 , pp. 6-14
    • Córdoba, M.1    Bruno, C.2    Costa, J.3    Balzarini, M.4
  • 41
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Machine Learn. 20:3 (1995), 273–297.
    • (1995) Machine Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 42
  • 43
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • Criminisi, A., Shotton, J., Konukoglu, E., Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends® Comput. Graph. Vis. 7:2–3 (2012), 81–227.
    • (2012) Found. Trends® Comput. Graph. Vis. , vol.7 , Issue.2-3 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 44
    • 79953684565 scopus 로고    scopus 로고
    • Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables
    • Cubero, S., Aleixos, N., Moltó E., Gómez-Sanchis, J., Blasco, J., Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol. 4:4 (2011), 487–504.
    • (2011) Food Bioprocess Technol. , vol.4 , Issue.4 , pp. 487-504
    • Cubero, S.1    Aleixos, N.2    Moltó, E.3    Gómez-Sanchis, J.4    Blasco, J.5
  • 45
    • 85058230345 scopus 로고
    • A Modified Fuzzy k-Means Method for Predictive Classification.
    • De Gruijter, J. J., McBratney, A. B. (1988). A Modified Fuzzy k-Means Method for Predictive Classification.
    • (1988)
    • De Gruijter, J.J.1    McBratney, A.B.2
  • 47
    • 84868329144 scopus 로고    scopus 로고
    • Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects
    • De Vylder, J., Vandenbussche, F., Hu, Y., Philips, W., Van Der Straeten, D., Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol. 160:3 (2012), 1149–1159.
    • (2012) Plant Physiol. , vol.160 , Issue.3 , pp. 1149-1159
    • De Vylder, J.1    Vandenbussche, F.2    Hu, Y.3    Philips, W.4    Van Der Straeten, D.5
  • 51
    • 79953222584 scopus 로고    scopus 로고
    • Comparison of pixel-and object-based classification in land cover change mapping
    • Dingle Robertson, L., King, D.J., Comparison of pixel-and object-based classification in land cover change mapping. Int. J. Remote Sens. 32:6 (2011), 1505–1529.
    • (2011) Int. J. Remote Sens. , vol.32 , Issue.6 , pp. 1505-1529
    • Dingle Robertson, L.1    King, D.J.2
  • 52
    • 41349115772 scopus 로고    scopus 로고
    • Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation
    • Dray, S., Saïd, S., Débias, F., Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation. J. Veg. Sci. 19:1 (2008), 45–56.
    • (2008) J. Veg. Sci. , vol.19 , Issue.1 , pp. 45-56
    • Dray, S.1    Saïd, S.2    Débias, F.3
  • 53
    • 22544459638 scopus 로고    scopus 로고
    • Learning techniques used in computer vision for food quality evaluation: a review
    • Du, C.J., Sun, D.W., Learning techniques used in computer vision for food quality evaluation: a review. J. Food Eng. 72:1 (2006), 39–55.
    • (2006) J. Food Eng. , vol.72 , Issue.1 , pp. 39-55
    • Du, C.J.1    Sun, D.W.2
  • 54
    • 85058232325 scopus 로고    scopus 로고
    • Adapted approach for fruit disease identification using images. ArXiv Preprint arXiv:1405.4930.
    • Dubey, S.R., Jalal, A.S. (2014). Adapted approach for fruit disease identification using images. ArXiv Preprint arXiv:1405.4930.
    • (2014)
    • Dubey, S.R.1    Jalal, A.S.2
  • 55
    • 85020452304 scopus 로고    scopus 로고
    • Global Demand for Food is Rising
    • Harvard Business Review April 07.
    • Elferink, M., Schierhorn, F. 2016. Global Demand for Food is Rising. Harvard Business Review April 07.
    • (2016)
    • Elferink, M.1    Schierhorn, F.2
  • 57
    • 85058210047 scopus 로고    scopus 로고
    • Global agriculture towards 2050: high-level expert forum on how to feed the world in 2050, 12-13 Oct 2009 by Food and Agriculture Organization of the United Nations.
    • FAO, (2009). Global agriculture towards 2050: high-level expert forum on how to feed the world in 2050, 12-13 Oct 2009 by Food and Agriculture Organization of the United Nations. https://reliefweb.int/report/world/global-agriculture-towards-2050-high-level-expert-forum-how-feed-world-2050-12-13-oct.
    • (2009)
  • 58
    • 85058221311 scopus 로고    scopus 로고
    • The future of food and agriculture: trends and challenges by Food and Agriculture Organization of the United Nations.
    • FAO, (2017). The future of food and agriculture: trends and challenges by Food and Agriculture Organization of the United Nations. https://reliefweb.int/sites/reliefweb.int/files/resources/a-i6583e.pdf.
    • (2017)
  • 61
    • 2442515762 scopus 로고    scopus 로고
    • An Introduction to Electronic and Ionic Materials
    • World Scientific Publishing Company
    • Gao, W., Sammes, N.M., An Introduction to Electronic and Ionic Materials. 1999, World Scientific Publishing Company.
    • (1999)
    • Gao, W.1    Sammes, N.M.2
  • 63
    • 33748999764 scopus 로고    scopus 로고
    • Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing
    • Gebhardt, S., Schellberg, J., Lock, R., Kühbauch, W., Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing. Precis. Agric. 7:3 (2006), 165–178.
    • (2006) Precis. Agric. , vol.7 , Issue.3 , pp. 165-178
    • Gebhardt, S.1    Schellberg, J.2    Lock, R.3    Kühbauch, W.4
  • 64
    • 84894272609 scopus 로고    scopus 로고
    • Comparative analysis of k-means and fuzzy c-means algorithms
    • Ghosh, S., Dubey, S.K., Comparative analysis of k-means and fuzzy c-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4:4 (2013), 35–39.
    • (2013) Int. J. Adv. Comput. Sci. Appl. , vol.4 , Issue.4 , pp. 35-39
    • Ghosh, S.1    Dubey, S.K.2
  • 65
    • 85019718046 scopus 로고    scopus 로고
    • Comparison of three methods for delineating management zones for site-specific crop management
    • Gili, A., Álvarez, C., Bagnato, R., Noellemeyer, E., Comparison of three methods for delineating management zones for site-specific crop management. Comput. Electron. Agric. 139 (2017), 213–223.
    • (2017) Comput. Electron. Agric. , vol.139 , pp. 213-223
    • Gili, A.1    Álvarez, C.2    Bagnato, R.3    Noellemeyer, E.4
  • 67
    • 61849170621 scopus 로고    scopus 로고
    • Identification of mushrooms subjected to freeze damage using hyperspectral imaging
    • Gowen, A.A., Taghizadeh, M., O'Donnell, C.P., Identification of mushrooms subjected to freeze damage using hyperspectral imaging. J. Food Eng. 93:1 (2009), 7–12.
    • (2009) J. Food Eng. , vol.93 , Issue.1 , pp. 7-12
    • Gowen, A.A.1    Taghizadeh, M.2    O'Donnell, C.P.3
  • 69
    • 14644403073 scopus 로고    scopus 로고
    • Large-scale investigation of weed seed identification by machine vision
    • Granitto, P.M., Verdes, P.F., Ceccatto, H.A., Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric. 47:1 (2005), 15–24.
    • (2005) Comput. Electron. Agric. , vol.47 , Issue.1 , pp. 15-24
    • Granitto, P.M.1    Verdes, P.F.2    Ceccatto, H.A.3
  • 70
    • 84861191044 scopus 로고    scopus 로고
    • Support vector machines for crop/weeds identification in maize fields
    • Guerrero, J.M., Pajares, G., Montalvo, M., Romeo, J., Guijarro, M., Support vector machines for crop/weeds identification in maize fields. Expert Syst. Appl. 39:12 (2012), 11149–11155.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.12 , pp. 11149-11155
    • Guerrero, J.M.1    Pajares, G.2    Montalvo, M.3    Romeo, J.4    Guijarro, M.5
  • 71
    • 80052769921 scopus 로고    scopus 로고
    • A machine vision system for classification of wheat and barley grain kernels
    • Guevara-Hernandez, F., Gomez-Gil, J., A machine vision system for classification of wheat and barley grain kernels. Spanish J. Agric. Res. 9:3 (2011), 672–680.
    • (2011) Spanish J. Agric. Res. , vol.9 , Issue.3 , pp. 672-680
    • Guevara-Hernandez, F.1    Gomez-Gil, J.2
  • 73
    • 84876248893 scopus 로고    scopus 로고
    • Machine vision based classification of tobacco leaves for automatic harvesting
    • Guru, D., Mallikarjuna, P., Manjunath, S., Shenoi, M., Machine vision based classification of tobacco leaves for automatic harvesting. Intell. Autom. Soft Comput. 18:5 (2012), 581–590.
    • (2012) Intell. Autom. Soft Comput. , vol.18 , Issue.5 , pp. 581-590
    • Guru, D.1    Mallikarjuna, P.2    Manjunath, S.3    Shenoi, M.4
  • 76
    • 0038692286 scopus 로고    scopus 로고
    • Design and analysis of an efficient evolutionary image segmentation algorithm
    • Ho, S.Y., Lee, K.Z., Design and analysis of an efficient evolutionary image segmentation algorithm. J. VLSI Signal Process. Syst. Signal Image Video Technol. 35:1 (2003), 29–42.
    • (2003) J. VLSI Signal Process. Syst. Signal Image Video Technol. , vol.35 , Issue.1 , pp. 29-42
    • Ho, S.Y.1    Lee, K.Z.2
  • 77
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • Hu, M., Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8:2 (1962), 179–187.
    • (1962) IRE Trans. Inf. Theory , vol.8 , Issue.2 , pp. 179-187
    • Hu, M.1
  • 78
    • 84893686834 scopus 로고    scopus 로고
    • The potential of double K-means clustering for banana image segmentation
    • Hu, M., Dong, Q., Liu, B., Malakar, P.K., The potential of double K-means clustering for banana image segmentation. J. Food Process Eng 37:1 (2014), 10–18.
    • (2014) J. Food Process Eng , vol.37 , Issue.1 , pp. 10-18
    • Hu, M.1    Dong, Q.2    Liu, B.3    Malakar, P.K.4
  • 79
    • 0000370168 scopus 로고
    • Photoelectric color-difference meter
    • In Proceedings of the Winter Meeting of the Optical Society of America
    • Hunter, R.S., Photoelectric color-difference meter. JOSA, 38(7), 1948, 661 In Proceedings of the Winter Meeting of the Optical Society of America.
    • (1948) JOSA , vol.38 , Issue.7 , pp. 661
    • Hunter, R.S.1
  • 82
    • 33947726552 scopus 로고    scopus 로고
    • Gaussian mixture model-based walnut shell and meat classification in hyperspectral fluorescence imagery
    • Jiang, L., Zhu, B., Jing, H., Chen, X., Rao, X., Tao, Y., Gaussian mixture model-based walnut shell and meat classification in hyperspectral fluorescence imagery. Trans. ASABE 50:1 (2007), 153–160.
    • (2007) Trans. ASABE , vol.50 , Issue.1 , pp. 153-160
    • Jiang, L.1    Zhu, B.2    Jing, H.3    Chen, X.4    Rao, X.5    Tao, Y.6
  • 83
    • 84959883480 scopus 로고    scopus 로고
    • Wheat rows detection at the early growth stage based on hough transform and vanishing point
    • Jiang, G., Wang, X., Wang, Z., Liu, H., Wheat rows detection at the early growth stage based on hough transform and vanishing point. Comput. Electron. Agric. 123 (2016), 211–223.
    • (2016) Comput. Electron. Agric. , vol.123 , pp. 211-223
    • Jiang, G.1    Wang, X.2    Wang, Z.3    Liu, H.4
  • 84
    • 32644445913 scopus 로고    scopus 로고
    • Application of support vector machine technology for weed and nitrogen stress detection in corn
    • Karimi, Y., Prasher, S.O., Patel, R.M., Kim, S.H., Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput. Electron. Agric. 51:1–2 (2006), 99–109.
    • (2006) Comput. Electron. Agric. , vol.51 , Issue.1-2 , pp. 99-109
    • Karimi, Y.1    Prasher, S.O.2    Patel, R.M.3    Kim, S.H.4
  • 85
    • 85034856115 scopus 로고    scopus 로고
    • Machine learning: applications in Indian agriculture
    • Kaur, K., Machine learning: applications in Indian agriculture. Int. J. Adv. Res. Comput. Commun. Eng., 5(4), 2016.
    • (2016) Int. J. Adv. Res. Comput. Commun. Eng. , vol.5 , Issue.4
    • Kaur, K.1
  • 88
    • 0004200962 scopus 로고
    • Discriminant Analysis
    • Sage Printing Press London, UK
    • Klecka, W.R., Discriminant Analysis. 1980, Sage Printing Press, London, UK.
    • (1980)
    • Klecka, W.R.1
  • 90
    • 80054856786 scopus 로고    scopus 로고
    • Implementation of web usage mining using APRIORI and FP growth algorithms
    • Kumar, B.S., Rukmani, K.V., Implementation of web usage mining using APRIORI and FP growth algorithms. Int. J. Adv. Netw. Appl. 1:06 (2010), 400–404.
    • (2010) Int. J. Adv. Netw. Appl. , vol.1 , Issue.6 , pp. 400-404
    • Kumar, B.S.1    Rukmani, K.V.2
  • 91
    • 80052534605 scopus 로고    scopus 로고
    • Green citrus detection using ‘eigenfruit’ color and circular Gabor texture features under natural outdoor conditions
    • Kurtulmus, F., Lee, W.S., Vardar, A., Green citrus detection using ‘eigenfruit’ color and circular Gabor texture features under natural outdoor conditions. Comput. Electron. Agric. 78:2 (2011), 140–149.
    • (2011) Comput. Electron. Agric. , vol.78 , Issue.2 , pp. 140-149
    • Kurtulmus, F.1    Lee, W.S.2    Vardar, A.3
  • 92
    • 84893646951 scopus 로고    scopus 로고
    • Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network
    • Kurtulmus, F., Lee, W.S., Vardar, A., Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precis. Agric. 15:1 (2014), 57–79.
    • (2014) Precis. Agric. , vol.15 , Issue.1 , pp. 57-79
    • Kurtulmus, F.1    Lee, W.S.2    Vardar, A.3
  • 93
    • 84910662280 scopus 로고    scopus 로고
    • Discriminating rapeseed varieties using computer vision and machine learning
    • Kurtulmuş F., Ünal, H., Discriminating rapeseed varieties using computer vision and machine learning. Expert Syst. Appl. 42:4 (2015), 1880–1891.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.4 , pp. 1880-1891
    • Kurtulmuş, F.1    Ünal, H.2
  • 94
    • 0004237323 scopus 로고
    • Discriminant Analysis
    • Macmillan Publishing Co New York, NY, USA
    • Lachenbruch, P.A., Discriminant Analysis. 1975, Macmillan Publishing Co, New York, NY, USA.
    • (1975)
    • Lachenbruch, P.A.1
  • 95
  • 96
    • 0001797621 scopus 로고    scopus 로고
    • Robotic weed control system for tomatoes
    • Lee, W.S., Slaughter, D., Giles, D., Robotic weed control system for tomatoes. Precis. Agric. 1:1 (1999), 95–113.
    • (1999) Precis. Agric. , vol.1 , Issue.1 , pp. 95-113
    • Lee, W.S.1    Slaughter, D.2    Giles, D.3
  • 97
    • 0042693195 scopus 로고    scopus 로고
    • A real-time grading method of apples based on features extracted from defects
    • Leemans, V., Destain, M., A real-time grading method of apples based on features extracted from defects. J. Food Eng. 61:1 (2004), 83–89.
    • (2004) J. Food Eng. , vol.61 , Issue.1 , pp. 83-89
    • Leemans, V.1    Destain, M.2
  • 99
    • 78049254875 scopus 로고    scopus 로고
    • Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine
    • Li, D., Yang, W., Wang, S., Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine. Comput. Electron. Agric. 74:2 (2010), 274–279.
    • (2010) Comput. Electron. Agric. , vol.74 , Issue.2 , pp. 274-279
    • Li, D.1    Yang, W.2    Wang, S.3
  • 100
    • 84904669171 scopus 로고    scopus 로고
    • Identifying blueberry fruit of different growth stages using natural outdoor color images
    • Li, H., Lee, W.S., Wang, K., Identifying blueberry fruit of different growth stages using natural outdoor color images. Comput. Electron. Agric. 106 (2014), 91–101.
    • (2014) Comput. Electron. Agric. , vol.106 , pp. 91-101
    • Li, H.1    Lee, W.S.2    Wang, K.3
  • 101
    • 76349119909 scopus 로고    scopus 로고
    • Automated strawberry grading system based on image processing
    • Liming, X., Yanchao, Z., Automated strawberry grading system based on image processing. Comput. Electron. Agric. 71 (2010), S32–S39.
    • (2010) Comput. Electron. Agric. , vol.71 , pp. S32-S39
    • Liming, X.1    Yanchao, Z.2
  • 102
    • 85045988394 scopus 로고    scopus 로고
    • Conventional and hyperspectral time-series imaging of maize lines widely used in field trials
    • Liang, Z., Pandey, P., Stoerger, V., Xu, Y., Qiu, Y., Ge, Y., Schnable, J.C., Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience, 7(2), 2017, gix117.
    • (2017) GigaScience , vol.7 , Issue.2 , pp. gix117
    • Liang, Z.1    Pandey, P.2    Stoerger, V.3    Xu, Y.4    Qiu, Y.5    Ge, Y.6    Schnable, J.C.7
  • 103
    • 85017167119 scopus 로고    scopus 로고
    • A computer vision system for early stage grape yield estimation based on shoot detection
    • Liu, S., Cossell, S., Tang, J., Dunn, G., Whitty, M., A computer vision system for early stage grape yield estimation based on shoot detection. Comput. Electron. Agric. 137 (2017), 88–101.
    • (2017) Comput. Electron. Agric. , vol.137 , pp. 88-101
    • Liu, S.1    Cossell, S.2    Tang, J.3    Dunn, G.4    Whitty, M.5
  • 104
    • 85046687038 scopus 로고    scopus 로고
    • Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis
    • Lu, J., Lee, W.S., Gan, H., Hu, X., Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis. Biosyst. Eng. 171 (2018), 78–90.
    • (2018) Biosyst. Eng. , vol.171 , pp. 78-90
    • Lu, J.1    Lee, W.S.2    Gan, H.3    Hu, X.4
  • 105
    • 85058226033 scopus 로고    scopus 로고
    • Development of a'patch spraying'system to control weeds in winter wheat. Development of a'patch spraying'system to control weeds in winter wheat. 158.
    • Lutman, P.J.W., Rew, L.J., Cussans, G.W., Miller, P.C.H., Paice, M.E.R., Stafford, J.E. (1998). Development of a'patch spraying'system to control weeds in winter wheat. Development of a'patch spraying'system to control weeds in winter wheat. 158.
    • (1998)
    • Lutman, P.J.W.1    Rew, L.J.2    Cussans, G.W.3    Miller, P.C.H.4    Paice, M.E.R.5    Stafford, J.E.6
  • 107
    • 0034471670 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: II. color models
    • Majumdar, S., Jayas, D., Classification of cereal grains using machine vision: II. color models. Trans. ASAE, 43(6), 2000, 1677.
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1677
    • Majumdar, S.1    Jayas, D.2
  • 108
    • 0034473332 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: I. morphology models
    • Majumdar, S., Jayas, D., Classification of cereal grains using machine vision: I. morphology models. Trans. ASAE, 43(6), 2000, 1669.
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1669
    • Majumdar, S.1    Jayas, D.2
  • 109
    • 0034473489 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: III. texture models
    • Majumdar, S., Jayas, D., Classification of cereal grains using machine vision: III. texture models. Trans. ASAE, 43(6), 2000, 1681.
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1681
    • Majumdar, S.1    Jayas, D.2
  • 110
    • 84875302843 scopus 로고    scopus 로고
    • Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision
    • Makky, M., Soni, P., Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision. Comput. Electron. Agric. 93 (2013), 129–139.
    • (2013) Comput. Electron. Agric. , vol.93 , pp. 129-139
    • Makky, M.1    Soni, P.2
  • 111
    • 4944263290 scopus 로고    scopus 로고
    • Segmentation of colour food images using a robust algorithm
    • Mery, D., Pedreschi, F., Segmentation of colour food images using a robust algorithm. J. Food Eng. 66:3 (2005), 353–360.
    • (2005) J. Food Eng. , vol.66 , Issue.3 , pp. 353-360
    • Mery, D.1    Pedreschi, F.2
  • 113
    • 0032122198 scopus 로고    scopus 로고
    • Textural imaging and discriminant analysis for distinguishing weeds for spot spraying
    • Meyer, G., Mehta, T., Kocher, M., Mortensen, D., Samal, A., Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Trans. ASAE, 41(4), 1998, 1189.
    • (1998) Trans. ASAE , vol.41 , Issue.4 , pp. 1189
    • Meyer, G.1    Mehta, T.2    Kocher, M.3    Mortensen, D.4    Samal, A.5
  • 114
    • 1142290141 scopus 로고    scopus 로고
    • Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images
    • Meyer, G.E., Neto, J.C., Jones, D.D., Hindman, T.W., Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 42:3 (2004), 161–180.
    • (2004) Comput. Electron. Agric. , vol.42 , Issue.3 , pp. 161-180
    • Meyer, G.E.1    Neto, J.C.2    Jones, D.D.3    Hindman, T.W.4
  • 115
    • 6344261812 scopus 로고    scopus 로고
    • Digital camera operation and fuzzy logic classification of uniform plant, soil, and residue color images
    • Meyer, G., Hindman, T., Jones, D., Mortensen, D., Digital camera operation and fuzzy logic classification of uniform plant, soil, and residue color images. Appl. Eng. Agric., 20(4), 2004, 519.
    • (2004) Appl. Eng. Agric. , vol.20 , Issue.4 , pp. 519
    • Meyer, G.1    Hindman, T.2    Jones, D.3    Mortensen, D.4
  • 116
    • 0032170036 scopus 로고    scopus 로고
    • Pattern recognition models for spectral reflectance evaluation of apple blemishes
    • Miller, W., Throop, J., Upchurch, B., Pattern recognition models for spectral reflectance evaluation of apple blemishes. Postharvest Biol. Technol. 14:1 (1998), 11–20.
    • (1998) Postharvest Biol. Technol. , vol.14 , Issue.1 , pp. 11-20
    • Miller, W.1    Throop, J.2    Upchurch, B.3
  • 117
    • 80054003485 scopus 로고    scopus 로고
    • Evaluation of an active optical sensor for detection of huanglongbing (HLB) disease
    • Mishra, A., Karimi, D., Ehsani, R., Albrigo, L.G., Evaluation of an active optical sensor for detection of huanglongbing (HLB) disease. Biosyst. Eng. 110:3 (2011), 302–309.
    • (2011) Biosyst. Eng. , vol.110 , Issue.3 , pp. 302-309
    • Mishra, A.1    Karimi, D.2    Ehsani, R.3    Albrigo, L.G.4
  • 118
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • WCB
    • Mitchell, T.M., Machine Learning. 1997, WCB.
    • (1997)
    • Mitchell, T.M.1
  • 119
    • 84876323526 scopus 로고    scopus 로고
    • An image segmentation method for apple sorting and grading using support vector machine and Otsu's method
    • Mizushima, A., Lu, R., An image segmentation method for apple sorting and grading using support vector machine and Otsu's method. Comput. Electron. Agric. 94 (2013), 29–37.
    • (2013) Comput. Electron. Agric. , vol.94 , pp. 29-37
    • Mizushima, A.1    Lu, R.2
  • 121
    • 84965062820 scopus 로고    scopus 로고
    • A time efficient leaf rust disease detection technique of wheat leaf images using pearson correlation coefficient and rough fuzzy C-means
    • Springer
    • Mondal, D., Kole, D.K., A time efficient leaf rust disease detection technique of wheat leaf images using pearson correlation coefficient and rough fuzzy C-means. Information Systems Design and Intelligent Applications, 2016, Springer, 609–618.
    • (2016) Information Systems Design and Intelligent Applications , pp. 609-618
    • Mondal, D.1    Kole, D.K.2
  • 122
    • 85034596626 scopus 로고    scopus 로고
    • Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and naive bayes classifier after identification of leaves
    • Mondal, D., Kole, D.K., Roy, K., Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and naive bayes classifier after identification of leaves. Comput. Electron. Agric. 142 (2017), 485–493.
    • (2017) Comput. Electron. Agric. , vol.142 , pp. 485-493
    • Mondal, D.1    Kole, D.K.2    Roy, K.3
  • 123
    • 0003504337 scopus 로고
    • Multivariate Statistical Methods
    • second ed. McGraw-Hill New York, NY
    • Morrison, D.F., Multivariate Statistical Methods. second ed., 1976, McGraw-Hill, New York, NY.
    • (1976)
    • Morrison, D.F.1
  • 124
    • 0242569276 scopus 로고    scopus 로고
    • Two-dimensional prediction of spatial variation in topsoil compaction of a sandy loam field-based on measured horizontal force of compaction sensor, cutting depth and moisture content
    • Mouazen, A.M., Dumont, K., Maertens, K., Ramon, H., Two-dimensional prediction of spatial variation in topsoil compaction of a sandy loam field-based on measured horizontal force of compaction sensor, cutting depth and moisture content. Soil Tillage Res. 74:1 (2003), 91–102.
    • (2003) Soil Tillage Res. , vol.74 , Issue.1 , pp. 91-102
    • Mouazen, A.M.1    Dumont, K.2    Maertens, K.3    Ramon, H.4
  • 125
    • 84998953509 scopus 로고    scopus 로고
    • Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging
    • Munera, S., Besada, C., Aleixos, N., Talens, P., Salvador, A., Sun, D.W., Blasco, J., Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT-Food Sci. Technol. 77 (2017), 241–248.
    • (2017) LWT-Food Sci. Technol. , vol.77 , pp. 241-248
    • Munera, S.1    Besada, C.2    Aleixos, N.3    Talens, P.4    Salvador, A.5    Sun, D.W.6    Blasco, J.7
  • 128
    • 32644437469 scopus 로고    scopus 로고
    • Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and a genetic algorithm
    • Neto, J.C., Meyer, G.E., Jones, D.D., Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and a genetic algorithm. Comput. Electron. Agric. 51:1 (2006), 66–85.
    • (2006) Comput. Electron. Agric. , vol.51 , Issue.1 , pp. 66-85
    • Neto, J.C.1    Meyer, G.E.2    Jones, D.D.3
  • 130
    • 38549113020 scopus 로고    scopus 로고
    • Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision
    • Nieuwenhuizen, A., Tang, L., Hofstee, J., Müller, J., Van Henten, E., Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision. Precis. Agric. 8:6 (2007), 267–278.
    • (2007) Precis. Agric. , vol.8 , Issue.6 , pp. 267-278
    • Nieuwenhuizen, A.1    Tang, L.2    Hofstee, J.3    Müller, J.4    Van Henten, E.5
  • 131
    • 33847141943 scopus 로고    scopus 로고
    • Plant classification for weed detection using hyperspectral imaging with wavelet analysis
    • Okamoto, H., Murata, T., Kataoka, T., Hata, S., Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol. Manage. 7:1 (2007), 31–37.
    • (2007) Weed Biol. Manage. , vol.7 , Issue.1 , pp. 31-37
    • Okamoto, H.1    Murata, T.2    Kataoka, T.3    Hata, S.4
  • 133
    • 84904019520 scopus 로고    scopus 로고
    • Potential of radial basis function-based support vector regression for apple disease detection
    • Omrani, E., Khoshnevisan, B., Shamshirband, S., Saboohi, H., Anuar, N.B., Nasir, M.H.N.M., Potential of radial basis function-based support vector regression for apple disease detection. Measurement 55 (2014), 512–519.
    • (2014) Measurement , vol.55 , pp. 512-519
    • Omrani, E.1    Khoshnevisan, B.2    Shamshirband, S.3    Saboohi, H.4    Anuar, N.B.5    Nasir, M.H.N.M.6
  • 134
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9:1 (1979), 62–66.
    • (1979) IEEE Trans. Syst. Man Cybernet. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 135
    • 85007086220 scopus 로고    scopus 로고
    • Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish
    • Pan, L., Sun, Y., Xiao, H., Gu, X., Hu, P., Wei, Y., Tu, K., Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish. Postharvest Biol. Technol. 126 (2017), 40–49.
    • (2017) Postharvest Biol. Technol. , vol.126 , pp. 40-49
    • Pan, L.1    Sun, Y.2    Xiao, H.3    Gu, X.4    Hu, P.5    Wei, Y.6    Tu, K.7
  • 136
    • 85027692340 scopus 로고    scopus 로고
    • High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging
    • Pandey, P., Ge, Y., Stoerger, V., Schnable, J.C., High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci., 8, 2017, 1348.
    • (2017) Front. Plant Sci. , vol.8 , pp. 1348
    • Pandey, P.1    Ge, Y.2    Stoerger, V.3    Schnable, J.C.4
  • 137
    • 85028331428 scopus 로고    scopus 로고
    • Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV)
    • Park, S., Ryu, D., Fuentes, S., Chung, H., Hernández-Montes, E., O'Connell, M., Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sens., 9(8), 2017, 828.
    • (2017) Remote Sens. , vol.9 , Issue.8 , pp. 828
    • Park, S.1    Ryu, D.2    Fuentes, S.3    Chung, H.4    Hernández-Montes, E.5    O'Connell, M.6
  • 140
    • 0343238472 scopus 로고    scopus 로고
    • Colour and shape analysis techniques for weed detection in cereal fields
    • Perez, A., Lopez, F., Benlloch, J., Christensen, S., Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. 25:3 (2000), 197–212.
    • (2000) Comput. Electron. Agric. , vol.25 , Issue.3 , pp. 197-212
    • Perez, A.1    Lopez, F.2    Benlloch, J.3    Christensen, S.4
  • 142
    • 84875094732 scopus 로고    scopus 로고
    • Rice diseases classification using feature selection and rule generation techniques
    • Phadikar, S., Sil, J., Das, A.K., Rice diseases classification using feature selection and rule generation techniques. Comput. Electron. Agric. 90 (2013), 76–85.
    • (2013) Comput. Electron. Agric. , vol.90 , pp. 76-85
    • Phadikar, S.1    Sil, J.2    Das, A.K.3
  • 143
    • 84928778233 scopus 로고    scopus 로고
    • An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm
    • Pham, V.H., Lee, B.R., An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm. Vietnam J. Comput. Sci. 2:1 (2015), 25–33.
    • (2015) Vietnam J. Comput. Sci. , vol.2 , Issue.1 , pp. 25-33
    • Pham, V.H.1    Lee, B.R.2
  • 144
    • 40849100012 scopus 로고    scopus 로고
    • Selection of the most efficient wavelength bands for discriminating weeds from crop
    • Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M., Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 62:2 (2008), 141–148.
    • (2008) Comput. Electron. Agric. , vol.62 , Issue.2 , pp. 141-148
    • Piron, A.1    Leemans, V.2    Kleynen, O.3    Lebeau, F.4    Destain, M.5
  • 145
    • 68749121945 scopus 로고    scopus 로고
    • Improving in-row weed detection in multispectral stereoscopic images
    • Piron, A., Leemans, V., Lebeau, F., Destain, M., Improving in-row weed detection in multispectral stereoscopic images. Comput. Electron. Agric. 69:1 (2009), 73–79.
    • (2009) Comput. Electron. Agric. , vol.69 , Issue.1 , pp. 73-79
    • Piron, A.1    Leemans, V.2    Lebeau, F.3    Destain, M.4
  • 146
    • 84936971834 scopus 로고    scopus 로고
    • Sorting olive batches for the milling process using image processing
    • Puerto, D.A., Gila, D.M.M., García, J.G., Ortega, J.G., Sorting olive batches for the milling process using image processing. Sensors 15:7 (2015), 15738–15754.
    • (2015) Sensors , vol.15 , Issue.7 , pp. 15738-15754
    • Puerto, D.A.1    Gila, D.M.M.2    García, J.G.3    Ortega, J.G.4
  • 147
    • 84910604494 scopus 로고    scopus 로고
    • Grading and classification of anthracnose fungal disease of fruits based on statistical texture features
    • Pujari, J.D., Yakkundimath, R., Byadgi, A.S., Grading and classification of anthracnose fungal disease of fruits based on statistical texture features. Int. J. Adv. Sci. Technol. 52:1 (2013), 121–132.
    • (2013) Int. J. Adv. Sci. Technol. , vol.52 , Issue.1 , pp. 121-132
    • Pujari, J.D.1    Yakkundimath, R.2    Byadgi, A.S.3
  • 149
    • 85058216612 scopus 로고    scopus 로고
    • Naive bayes and text classification i-introduction and theory. ArXiv Preprint arXiv:1410.5329.
    • Raschka, S. (2014). Naive bayes and text classification i-introduction and theory. ArXiv Preprint arXiv:1410.5329.
    • (2014)
    • Raschka, S.1
  • 150
    • 84930210544 scopus 로고    scopus 로고
    • Classification of contaminants from wheat using near-infrared hyperspectral imaging
    • Ravikanth, L., Singh, C.B., Jayas, D.S., White, N.D., Classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosyst. Eng. 135 (2015), 73–86.
    • (2015) Biosyst. Eng. , vol.135 , pp. 73-86
    • Ravikanth, L.1    Singh, C.B.2    Jayas, D.S.3    White, N.D.4
  • 151
    • 83655163976 scopus 로고    scopus 로고
    • A real-time mathematical computer method for potato inspection using machine vision
    • Razmjooy, N., Mousavi, B.S., Soleymani, F., A real-time mathematical computer method for potato inspection using machine vision. Comput. Math. Appl. 63:1 (2012), 268–279.
    • (2012) Comput. Math. Appl. , vol.63 , Issue.1 , pp. 268-279
    • Razmjooy, N.1    Mousavi, B.S.2    Soleymani, F.3
  • 152
    • 85046513895 scopus 로고    scopus 로고
    • Development of a Machine Vision Based Weed (Goldenrod) Detection System for Spot-Application of Herbicides in Wild Blueberry Cropping System
    • M.Sc. thesis Dalhousie university Halifax, Canada
    • Rehman, T., Development of a Machine Vision Based Weed (Goldenrod) Detection System for Spot-Application of Herbicides in Wild Blueberry Cropping System. M.Sc. thesis, 2017, Dalhousie university, Halifax, Canada.
    • (2017)
    • Rehman, T.1
  • 153
    • 85046513834 scopus 로고    scopus 로고
    • Optimising the parameters influencing performance and weed (goldenrod) identification accuracy of colour co-occurrence matrices
    • Rehman, T.U., Zaman, Q.U., Chang, Y.K., Schumann, A.W., Corscadden, K.W., Esau, T.J., Optimising the parameters influencing performance and weed (goldenrod) identification accuracy of colour co-occurrence matrices. Biosyst. Eng. 170 (2018), 85–95.
    • (2018) Biosyst. Eng. , vol.170 , pp. 85-95
    • Rehman, T.U.1    Zaman, Q.U.2    Chang, Y.K.3    Schumann, A.W.4    Corscadden, K.W.5    Esau, T.J.6
  • 154
    • 85027962823 scopus 로고    scopus 로고
    • Terrain assessment for precision agriculture using vehicle dynamic modelling
    • Reina, G., Milella, A., Galati, R., Terrain assessment for precision agriculture using vehicle dynamic modelling. Biosyst. Eng. 162 (2017), 124–139.
    • (2017) Biosyst. Eng. , vol.162 , pp. 124-139
    • Reina, G.1    Milella, A.2    Galati, R.3
  • 156
  • 162
    • 84879457559 scopus 로고    scopus 로고
    • High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis
    • Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., Boureau, T., High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 9(1), 2013, 17.
    • (2013) Plant Methods , vol.9 , Issue.1 , pp. 17
    • Rousseau, C.1    Belin, E.2    Bove, E.3    Rousseau, D.4    Fabre, F.5    Berruyer, R.6    Boureau, T.7
  • 163
    • 77956892823 scopus 로고    scopus 로고
    • Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
    • Rumpf, T., Mahlein, A.K., Steiner, U., Oerke, E.C., Dehne, H.W., Plümer, L., Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 74:1 (2010), 91–99.
    • (2010) Comput. Electron. Agric. , vol.74 , Issue.1 , pp. 91-99
    • Rumpf, T.1    Mahlein, A.K.2    Steiner, U.3    Oerke, E.C.4    Dehne, H.W.5    Plümer, L.6
  • 164
    • 80051762829 scopus 로고    scopus 로고
    • Supervised classification of agricultural land cover using a modified k-NN technique (MNN) and Landsat remote sensing imagery
    • Samaniego, L., Schulz, K., Supervised classification of agricultural land cover using a modified k-NN technique (MNN) and Landsat remote sensing imagery. Remote Sens. 1:4 (2009), 875–895.
    • (2009) Remote Sens. , vol.1 , Issue.4 , pp. 875-895
    • Samaniego, L.1    Schulz, K.2
  • 165
    • 79959687790 scopus 로고    scopus 로고
    • Visible-near infrared spectroscopy for detection of huanglongbing in citrus orchards
    • Sankaran, S., Mishra, A., Maja, J.M., Ehsani, R., Visible-near infrared spectroscopy for detection of huanglongbing in citrus orchards. Comput. Electron. Agric. 77:2 (2011), 127–134.
    • (2011) Comput. Electron. Agric. , vol.77 , Issue.2 , pp. 127-134
    • Sankaran, S.1    Mishra, A.2    Maja, J.M.3    Ehsani, R.4
  • 166
    • 84859778942 scopus 로고    scopus 로고
    • Detection of huanglongbing disease in citrus using fluorescence spectroscopy
    • Sankaran, S., Ehsani, R., Detection of huanglongbing disease in citrus using fluorescence spectroscopy. Trans. ASABE 55:1 (2012), 313–320.
    • (2012) Trans. ASABE , vol.55 , Issue.1 , pp. 313-320
    • Sankaran, S.1    Ehsani, R.2
  • 167
    • 84884914397 scopus 로고    scopus 로고
    • Comparison of visible-near infrared and mid-infrared spectroscopy for classification of huanglongbing and citrus canker infected leaves
    • Sankaran, S., Ehsani, R., Comparison of visible-near infrared and mid-infrared spectroscopy for classification of huanglongbing and citrus canker infected leaves. Agric. Eng. Int.: CIGR J. 15:3 (2013), 75–79.
    • (2013) Agric. Eng. Int.: CIGR J. , vol.15 , Issue.3 , pp. 75-79
    • Sankaran, S.1    Ehsani, R.2
  • 169
    • 0343724637 scopus 로고    scopus 로고
    • Modeling land-use change in the Ipswich watershed, Massachusetts, USA
    • Schneider, L.C., Pontius, R.G. Jr, Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 85:1–3 (2001), 83–94.
    • (2001) Agric. Ecosyst. Environ. , vol.85 , Issue.1-3 , pp. 83-94
    • Schneider, L.C.1    Pontius, R.G.2
  • 170
    • 85020011522 scopus 로고    scopus 로고
    • Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods
    • Senthilnath, J., Kandukuri, M., Dokania, A., Ramesh, K., Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric. 140 (2017), 8–24.
    • (2017) Comput. Electron. Agric. , vol.140 , pp. 8-24
    • Senthilnath, J.1    Kandukuri, M.2    Dokania, A.3    Ramesh, K.4
  • 171
    • 0025511038 scopus 로고
    • Plant identification using color co-occurrence matrices
    • Shearer, S.A., Holmes, R., Plant identification using color co-occurrence matrices. Trans. ASAE 33:6 (1990), 1237–1244.
    • (1990) Trans. ASAE , vol.33 , Issue.6 , pp. 1237-1244
    • Shearer, S.A.1    Holmes, R.2
  • 172
    • 0025510956 scopus 로고
    • Color and defect sorting of bell peppers using machine vision
    • Shearer, S.A., Payne, F.A., Color and defect sorting of bell peppers using machine vision. Tran. ASAE 33:6 (1990), 1245–1250.
    • (1990) Tran. ASAE , vol.33 , Issue.6 , pp. 1245-1250
    • Shearer, S.A.1    Payne, F.A.2
  • 174
    • 85026632945 scopus 로고    scopus 로고
    • Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis
    • Shi, Y., Huang, W., Luo, J., Huang, L., Zhou, X., Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 141 (2017), 171–180.
    • (2017) Comput. Electron. Agric. , vol.141 , pp. 171-180
    • Shi, Y.1    Huang, W.2    Luo, J.3    Huang, L.4    Zhou, X.5
  • 175
    • 84864386749 scopus 로고    scopus 로고
    • Postharvest citrus mass and size estimation using a logistic classification model and a watershed algorithm
    • Shin, J.S., Lee, W.S., Ehsani, R., Postharvest citrus mass and size estimation using a logistic classification model and a watershed algorithm. Biosyst. Eng. 113:1 (2012), 42–53.
    • (2012) Biosyst. Eng. , vol.113 , Issue.1 , pp. 42-53
    • Shin, J.S.1    Lee, W.S.2    Ehsani, R.3
  • 176
    • 84904682971 scopus 로고    scopus 로고
    • Classification models of bruise and cultivar detection on the basis of hyperspectral imaging data
    • Siedliska, A., Baranowski, P., Mazurek, W., Classification models of bruise and cultivar detection on the basis of hyperspectral imaging data. Comput. Electron. Agric. 106 (2014), 66–74.
    • (2014) Comput. Electron. Agric. , vol.106 , pp. 66-74
    • Siedliska, A.1    Baranowski, P.2    Mazurek, W.3
  • 177
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S., Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21:2 (2016), 110–124.
    • (2016) Trends Plant Sci. , vol.21 , Issue.2 , pp. 110-124
    • Singh, A.1    Ganapathysubramanian, B.2    Singh, A.K.3    Sarkar, S.4
  • 178
    • 85016928824 scopus 로고    scopus 로고
    • Detection of plant leaf diseases using image segmentation and soft computing techniques
    • Singh, V., Misra, A.K., Detection of plant leaf diseases using image segmentation and soft computing techniques. Inform. Process. Agric. 4:1 (2017), 41–49.
    • (2017) Inform. Process. Agric. , vol.4 , Issue.1 , pp. 41-49
    • Singh, V.1    Misra, A.K.2
  • 179
    • 85058231068 scopus 로고    scopus 로고
    • Weeds and Plants Recognition Using Fuzzy Clustering and Fractal Dimension Methods for Automatic Weed Control.
    • Solahudin, M., Boro Seminar, K., Astika, I. W., Buono, A. (2010). Weeds and Plants Recognition Using Fuzzy Clustering and Fractal Dimension Methods for Automatic Weed Control.
    • (2010)
    • Solahudin, M.1    Boro Seminar, K.2    Astika, I.W.3    Buono, A.4
  • 180
    • 84874645024 scopus 로고    scopus 로고
    • Automatic recognition of quarantine citrus diseases
    • Stegmayer, G., Milone, D.H., Garran, S., Burdyn, L., Automatic recognition of quarantine citrus diseases. Expert Syst. Appl. 40:9 (2013), 3512–3517.
    • (2013) Expert Syst. Appl. , vol.40 , Issue.9 , pp. 3512-3517
    • Stegmayer, G.1    Milone, D.H.2    Garran, S.3    Burdyn, L.4
  • 181
    • 0032687378 scopus 로고    scopus 로고
    • Real-time weed detection in outdoor field conditions
    • International Society for Optics and Photonics
    • Steward, B.L., Tian, L.F., Real-time weed detection in outdoor field conditions. Precision Agriculture and Biological Quality, vol. 3543, 1999, International Society for Optics and Photonics, 266–279.
    • (1999) Precision Agriculture and Biological Quality , vol.3543 , pp. 266-279
    • Steward, B.L.1    Tian, L.F.2
  • 182
    • 3042723522 scopus 로고    scopus 로고
    • Reduced-dimension clustering for vegetation segmentation
    • Steward, B.L., Tian, L.F., Nettleton, D., Tang, L., Reduced-dimension clustering for vegetation segmentation. Trans. ASAE, 47(2), 2004, 609.
    • (2004) Trans. ASAE , vol.47 , Issue.2 , pp. 609
    • Steward, B.L.1    Tian, L.F.2    Nettleton, D.3    Tang, L.4
  • 183
    • 84991487905 scopus 로고    scopus 로고
    • Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches
    • Sun, Y., Gu, X., Sun, K., Hu, H., Xu, M., Wang, Z., Pan, L., Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches. LWT-Food Sci. Technol. 75 (2017), 557–564.
    • (2017) LWT-Food Sci. Technol. , vol.75 , pp. 557-564
    • Sun, Y.1    Gu, X.2    Sun, K.3    Hu, H.4    Xu, M.5    Wang, Z.6    Pan, L.7
  • 184
    • 0004102479 scopus 로고    scopus 로고
    • Reinforcement Learning: An Introduction
    • MIT press
    • Sutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction. 1998, MIT press.
    • (1998)
    • Sutton, R.S.1    Barto, A.G.2
  • 186
    • 84872613462 scopus 로고    scopus 로고
    • Management zones delineation using fuzzy clustering techniques in grapevines
    • Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., Gemtos, T., Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 14:1 (2013), 18–39.
    • (2013) Precis. Agric. , vol.14 , Issue.1 , pp. 18-39
    • Tagarakis, A.1    Liakos, V.2    Fountas, S.3    Koundouras, S.4    Gemtos, T.5
  • 187
    • 34548657599 scopus 로고    scopus 로고
    • Evaluation of the effect of moisture content on cereal grains by digital image analysis
    • Tahir, A., Neethirajan, S., Jayas, D., Shahin, M., Symons, S., White, N., Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Res. Int. 40:9 (2007), 1140–1145.
    • (2007) Food Res. Int. , vol.40 , Issue.9 , pp. 1140-1145
    • Tahir, A.1    Neethirajan, S.2    Jayas, D.3    Shahin, M.4    Symons, S.5    White, N.6
  • 188
    • 61349169686 scopus 로고    scopus 로고
    • A vision-based hybrid classifier for weeds detection in precision agriculture through the bayesian and fuzzy k-means paradigms
    • Tellaeche, A., BurgosArtizzu, X., Pajares, G., Ribeiro, A., A vision-based hybrid classifier for weeds detection in precision agriculture through the bayesian and fuzzy k-means paradigms. Innovat. Hybrid Intell. Syst., 2007, 72–79.
    • (2007) Innovat. Hybrid Intell. Syst. , pp. 72-79
    • Tellaeche, A.1    BurgosArtizzu, X.2    Pajares, G.3    Ribeiro, A.4
  • 189
    • 77957894745 scopus 로고    scopus 로고
    • A computer vision approach for weeds identification through Support Vector Machines
    • Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A., A computer vision approach for weeds identification through Support Vector Machines. Appl. Soft Comput. 11:1 (2011), 908–915.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 908-915
    • Tellaeche, A.1    Pajares, G.2    Burgos-Artizzu, X.P.3    Ribeiro, A.4
  • 190
    • 84870772488 scopus 로고    scopus 로고
    • SVM-based multiple classifier system for recognition of wheat leaf diseases
    • IEEE
    • Tian, Y., Zhao, C., Lu, S., Guo, X., SVM-based multiple classifier system for recognition of wheat leaf diseases. World Automation Congress (WAC), 2012, 2012, IEEE, 189–193.
    • (2012) World Automation Congress (WAC), 2012 , pp. 189-193
    • Tian, Y.1    Zhao, C.2    Lu, S.3    Guo, X.4
  • 191
    • 84893874008 scopus 로고    scopus 로고
    • An Introduction to Statistical Learning-with Applications in R
    • Springer publishing Co New York, NY, USA
    • Tibshirani, R., James, G., Witten, D., Hastie, T., An Introduction to Statistical Learning-with Applications in R. 2013, Springer publishing Co, New York, NY, USA.
    • (2013)
    • Tibshirani, R.1    James, G.2    Witten, D.3    Hastie, T.4
  • 192
    • 0033893762 scopus 로고    scopus 로고
    • Agricultural crop classification using SAR tone and texture statistics
    • Treitz, P., Howarth, P., Filho, O., Soulis, E., Agricultural crop classification using SAR tone and texture statistics. Canad. J. Remote Sens. 26:1 (2000), 18–29.
    • (2000) Canad. J. Remote Sens. , vol.26 , Issue.1 , pp. 18-29
    • Treitz, P.1    Howarth, P.2    Filho, O.3    Soulis, E.4
  • 193
    • 13844308383 scopus 로고    scopus 로고
    • Mapping clay content variation using electromagnetic induction techniques
    • Triantafilis, J., Lesch, S., Mapping clay content variation using electromagnetic induction techniques. Comput. Electron. Agric. 46:1 (2005), 203–237.
    • (2005) Comput. Electron. Agric. , vol.46 , Issue.1 , pp. 203-237
    • Triantafilis, J.1    Lesch, S.2
  • 194
    • 33750700023 scopus 로고    scopus 로고
    • Automatic defect segmentation of ‘Jonagold'apples on multi-spectral images: a comparative study
    • Unay, D., Gosselin, B., Automatic defect segmentation of ‘Jonagold'apples on multi-spectral images: a comparative study. Postharvest Biol. Technol. 42:3 (2006), 271–279.
    • (2006) Postharvest Biol. Technol. , vol.42 , Issue.3 , pp. 271-279
    • Unay, D.1    Gosselin, B.2
  • 196
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley New York
    • Vapnik, V., Statistical Learning Theory. 1998, Wiley, New York.
    • (1998)
    • Vapnik, V.1
  • 197
    • 85028328702 scopus 로고    scopus 로고
    • Intelligent classification models for food products basis on morphological, colour and texture features
    • Veernagouda Ganganagowder, N., Kamath, P., Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66(4), 2017.
    • (2017) Acta Agronómica , vol.66 , Issue.4
    • Veernagouda Ganganagowder, N.1    Kamath, P.2
  • 198
    • 84966708398 scopus 로고    scopus 로고
    • Kernel-based PSO and FRVM: an automatic plant leaf type detection using texture, shape, and color features
    • VijayaLakshmi, B., Mohan, V., Kernel-based PSO and FRVM: an automatic plant leaf type detection using texture, shape, and color features. Comput. Electron. Agric. 125 (2016), 99–112.
    • (2016) Comput. Electron. Agric. , vol.125 , pp. 99-112
    • VijayaLakshmi, B.1    Mohan, V.2
  • 200
    • 78249258100 scopus 로고    scopus 로고
    • Low and high-level visual feature-based apple detection from multi-modal images
    • Wachs, J.P., Stern, H.I., Burks, T., Alchanatis, V., Low and high-level visual feature-based apple detection from multi-modal images. Precis. Agric. 11:6 (2010), 717–735.
    • (2010) Precis. Agric. , vol.11 , Issue.6 , pp. 717-735
    • Wachs, J.P.1    Stern, H.I.2    Burks, T.3    Alchanatis, V.4
  • 201
    • 85058209424 scopus 로고    scopus 로고
    • The World Bank: Agricultural Land (% of Land Area).
    • World Bank (2015). The World Bank: Agricultural Land (% of Land Area). https://data.worldbank.org/indicator/AG.LND.AGRI.ZS.
    • (2015)
  • 203
    • 79957444120 scopus 로고    scopus 로고
    • Use of leaf color images to identify nitrogen and potassium deficient tomatoes
    • Xu, G., Zhang, F., Shah, S.G., Ye, Y., Mao, H., Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recogn. Lett. 32:11 (2011), 1584–1590.
    • (2011) Pattern Recogn. Lett. , vol.32 , Issue.11 , pp. 1584-1590
    • Xu, G.1    Zhang, F.2    Shah, S.G.3    Ye, Y.4    Mao, H.5
  • 204
    • 0037417454 scopus 로고    scopus 로고
    • Application of decision tree technology for image classification using remote sensing data
    • Yang, C.C., Prasher, S.O., Enright, P., Madramootoo, C., Burgess, M., Goel, P.K., Callum, I., Application of decision tree technology for image classification using remote sensing data. Agric. Syst. 76:3 (2003), 1101–1117.
    • (2003) Agric. Syst. , vol.76 , Issue.3 , pp. 1101-1117
    • Yang, C.C.1    Prasher, S.O.2    Enright, P.3    Madramootoo, C.4    Burgess, M.5    Goel, P.K.6    Callum, I.7
  • 208
    • 0029294032 scopus 로고
    • Effective criteria for weed identification in wheat fields using machine vision
    • Zhang, N., Chaisattapagon, C., Effective criteria for weed identification in wheat fields using machine vision. Trans. ASAE 38:3 (1995), 965–974.
    • (1995) Trans. ASAE , vol.38 , Issue.3 , pp. 965-974
    • Zhang, N.1    Chaisattapagon, C.2
  • 209
    • 85026753987 scopus 로고    scopus 로고
    • Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements
    • Zhang, J., Wang, N., Yuan, L., Chen, F., Wu, K., Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosyst. Eng. 162 (2017), 20–29.
    • (2017) Biosyst. Eng. , vol.162 , pp. 20-29
    • Zhang, J.1    Wang, N.2    Yuan, L.3    Chen, F.4    Wu, K.5
  • 210
    • 85012256411 scopus 로고    scopus 로고
    • Leaf image based cucumber disease recognition using sparse representation classification
    • Zhang, S., Wu, X., You, Z., Zhang, L., Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 134 (2017), 135–141.
    • (2017) Comput. Electron. Agric. , vol.134 , pp. 135-141
    • Zhang, S.1    Wu, X.2    You, Z.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.