메뉴 건너뛰기




Volumn 56, Issue 4, 2019, Pages 605-623

Use of principal components of UAV-acquired narrow-band multispectral imagery to map the diverse low stature vegetation fAPAR

Author keywords

Chemometrics; leaf area index; MiniMCA; precision agriculture; productivity

Indexed keywords

IMAGE PROCESSING; LEAF AREA INDEX; MAPPING; MULTISPECTRAL IMAGE; PRECISION; PRINCIPAL COMPONENT ANALYSIS; UNMANNED VEHICLE; VEGETATION DYNAMICS;

EID: 85057604739     PISSN: 15481603     EISSN: None     Source Type: Journal    
DOI: 10.1080/15481603.2018.1550873     Document Type: Article
Times cited : (24)

References (66)
  • 1
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • Akaike, H., 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19: 716–723. doi:10.1109/TAC.1974.1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0032084065 scopus 로고    scopus 로고
    • Biophysical and Biochemical Sources of Variability in Canopy Reflectance
    • Asner, G. P., 1998. “Biophysical and Biochemical Sources of Variability in Canopy Reflectance.” Remote Sensing of Environment 64: 234–253. doi:10.1016/S0034-4257(98)00014-5.
    • (1998) Remote Sensing of Environment , vol.64 , pp. 234-253
    • Asner, G.P.1
  • 3
    • 81955163279 scopus 로고    scopus 로고
    • Improving Canopy Processes in the Community Land Model Version 4 (CLM4) Using Global Flux Fields Empirically Inferred from FLUXNET Data
    • Bonan, G. B., P. J., Lawrence, K. W., Oleson, S., Levis, M., Jung, M., Reichstein, D. M., Lawrence, and S. C., Swenson. 2011. “Improving Canopy Processes in the Community Land Model Version 4 (CLM4) Using Global Flux Fields Empirically Inferred from FLUXNET Data.” Journal of Geophysical Research 116: G02014. doi:10.1029/2010JG001593.
    • (2011) Journal of Geophysical Research , vol.116 , pp. G02014
    • Bonan, G.B.1    Lawrence, P.J.2    Oleson, K.W.3    Levis, S.4    Jung, M.5    Reichstein, M.6    Lawrence, D.M.7    Swenson, S.C.8
  • 4
    • 0242459671 scopus 로고    scopus 로고
    • Ground‐Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies
    • Bréda, N. J. J., 2003. “Ground‐Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies.” Journal of Experimental Botany 54: 2403–2417. doi:10.1093/jxb/erg263.
    • (2003) Journal of Experimental Botany , vol.54 , pp. 2403-2417
    • Bréda, N.J.J.1
  • 5
    • 34250016342 scopus 로고
    • Extinction Coefficients for Radiation in Plant Canopies Calculated Using an Ellipsoidal Inclination Angle Distribution
    • Campbell, G. S., 1986. “Extinction Coefficients for Radiation in Plant Canopies Calculated Using an Ellipsoidal Inclination Angle Distribution.” Agricultural and Forest Meteorology 36: 317–321. doi:10.1016/0168-1923(86)90010-9.
    • (1986) Agricultural and Forest Meteorology , vol.36 , pp. 317-321
    • Campbell, G.S.1
  • 6
    • 84937860942 scopus 로고    scopus 로고
    • Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images
    • Candiago, S., F., Remondino, M., De Giglio, M., Dubbini, and M., Gattelli. 2015. “Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images.” Remote Sensing 7: 4026. doi:10.3390/rs70404026.
    • (2015) Remote Sensing , vol.7 , pp. 4026
    • Candiago, S.1    Remondino, F.2    De Giglio, M.3    Dubbini, M.4    Gattelli, M.5
  • 7
    • 84901784514 scopus 로고    scopus 로고
    • Retrieving Multi-Scale Climatic Variations from High Dimensional Time-Series MODIS Green Vegetation Cover in a Tropical/Subtropical Mountainous Island
    • Chang, C.-T., H.-C., Wang, and C., Huang. 2014. “Retrieving Multi-Scale Climatic Variations from High Dimensional Time-Series MODIS Green Vegetation Cover in a Tropical/Subtropical Mountainous Island.” Journal of Mountain Science 11: 407–420. doi:10.1007/s11629-013-2835-x.
    • (2014) Journal of Mountain Science , vol.11 , pp. 407-420
    • Chang, C.-T.1    Wang, H.-C.2    Huang, C.3
  • 8
    • 0030291768 scopus 로고    scopus 로고
    • Canopy Architecture and Remote Sensing of the Fraction of Photosynthetically Active Radiation Absorbed by Boreal Conifer Forests
    • Chen, J. M., 1996. “Canopy Architecture and Remote Sensing of the Fraction of Photosynthetically Active Radiation Absorbed by Boreal Conifer Forests.” IEEE Transactions on Geoscience and Remote Sensing 34: 1353–1368. doi:10.1109/36.544559.
    • (1996) IEEE Transactions on Geoscience and Remote Sensing , vol.34 , pp. 1353-1368
    • Chen, J.M.1
  • 9
    • 0032814176 scopus 로고    scopus 로고
    • Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results
    • Cramer, W., D. W., Kicklighter, A., Bondeau, B. M. G., Iii, B. N., Churkina, A., Ruimy, and A. L., Schloss; the Participants of the Potsdam NPP Model Intercomparison. 1999. “Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results.” Global Change Biology 5: 1–15. doi:10.1046/j.1365-2486.1999.00009.x.
    • (1999) Global Change Biology , vol.5 , pp. 1-15
    • Cramer, W.1    Kicklighter, D.W.2    Bondeau, A.3    Iii, B.M.G.4    Churkina, B.N.5    Ruimy, A.6    Schloss, A.L.7
  • 11
    • 85015379127 scopus 로고    scopus 로고
    • PROSPECT-D: Towards Modeling Leaf Optical Properties through a Complete Lifecycle
    • Féret, J. B., A. A., Gitelson, S. D., Noble, and S., Jacquemoud. 2017. “PROSPECT-D: Towards Modeling Leaf Optical Properties through a Complete Lifecycle.” Remote Sensing of Environment 193: 204–215. doi:10.1016/j.rse.2017.03.004.
    • (2017) Remote Sensing of Environment , vol.193 , pp. 204-215
    • Féret, J.B.1    Gitelson, A.A.2    Noble, S.D.3    Jacquemoud, S.4
  • 13
    • 84863494534 scopus 로고    scopus 로고
    • Mapping Radiation Interception in Row-Structured Orchards Using 3D Simulation and High-Resolution Airborne Imagery Acquired from a UAV
    • Guillen-Climent, M. L., P. J., Zarco-Tejada, J. A. J., Berni, P. R. J., North, and F. J., Villalobos. 2012. “Mapping Radiation Interception in Row-Structured Orchards Using 3D Simulation and High-Resolution Airborne Imagery Acquired from a UAV.” Precision Agriculture 13: 473–500. doi:10.1007/s11119-012-9263-8.
    • (2012) Precision Agriculture , vol.13 , pp. 473-500
    • Guillen-Climent, M.L.1    Zarco-Tejada, P.J.2    Berni, J.A.J.3    North, P.R.J.4    Villalobos, F.J.5
  • 14
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture
    • Haboudane, D., J. R., Miller, E., Pattey, P. J., Zarco-Tejada, and I. B., Strachan. 2004. “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote Sensing of Environment 90: 337–352. doi:10.1016/j.rse.2003.12.013.
    • (2004) Remote Sensing of Environment , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 15
    • 79952385365 scopus 로고    scopus 로고
    • Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities
    • Hardin, P. J., and R. R., Jensen. 2011. “Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities.” GIScience & Remote Sensing 48: 99–111. doi:10.2747/1548-1603.48.1.99.
    • (2011) GIScience & Remote Sensing , vol.48 , pp. 99-111
    • Hardin, P.J.1    Jensen, R.R.2
  • 16
    • 85052336944 scopus 로고    scopus 로고
    • Small Unmanned Aerial Systems (Suas) for Environmental Remote Sensing: Challenges and Opportunities Revisited
    • Hardin, P. J., V., Lulla, R. R., Jensen, and J. R., Jensen. 2018. “Small Unmanned Aerial Systems (Suas) for Environmental Remote Sensing: Challenges and Opportunities Revisited.” GIScience & Remote Sensing. 10.1080/15481603.2018.1510088.
    • (2018) GIScience & Remote Sensing
    • Hardin, P.J.1    Lulla, V.2    Jensen, R.R.3    Jensen, J.R.4
  • 17
    • 47549116597 scopus 로고    scopus 로고
    • Comparison of Single- and Multi-Date Landsat Data for Mapping Wildfire Scars in Ocala National Forest, Florida
    • Henry, M. C., 2008. “Comparison of Single- and Multi-Date Landsat Data for Mapping Wildfire Scars in Ocala National Forest, Florida.” Photogrammetric Engineering & Remote Sensing 74: 881–891. doi:10.14358/PERS.74.7.881.
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.74 , pp. 881-891
    • Henry, M.C.1
  • 18
    • 0017280570 scopus 로고
    • A Biometrics Invited Paper. The Analysis and Selection of Variables in Linear Regression
    • Hocking, R. R., 1976. “A Biometrics Invited Paper. The Analysis and Selection of Variables in Linear Regression.” Biometrics 32: 1–49. doi:10.2307/2529336.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 19
    • 84969917083 scopus 로고    scopus 로고
    • Best Practice for Minimising Unmanned Aerial Vehicle Disturbance to Wildlife in Biological Field Research
    • Hodgson, J. C., and L. P., Koh. 2016. “Best Practice for Minimising Unmanned Aerial Vehicle Disturbance to Wildlife in Biological Field Research.” Current Biology 26: R404–R405. doi:10.1016/j.cub.2016.04.001.
    • (2016) Current Biology , vol.26 , pp. R404-R405
    • Hodgson, J.C.1    Koh, L.P.2
  • 20
    • 84870717321 scopus 로고    scopus 로고
    • Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle
    • Hruska, R., J., Mitchell, M., Anderson, and N. F., Glenn. 2012. “Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle.” Remote Sensing 4: 2736. doi:10.3390/rs4092736.
    • (2012) Remote Sensing , vol.4 , pp. 2736
    • Hruska, R.1    Mitchell, J.2    Anderson, M.3    Glenn, N.F.4
  • 21
    • 0031202623 scopus 로고    scopus 로고
    • Vegetation Canopy PAR Absorptance and NDVI: An Assessment for Ten Tree Species with the SAIL Model
    • Huemmrich, K. F., and S. N., Goward. 1997. “Vegetation Canopy PAR Absorptance and NDVI: An Assessment for Ten Tree Species with the SAIL Model.” Remote Sensing of Environment 61: 254–269. doi:10.1016/S0034-4257(97)00042-4.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 254-269
    • Huemmrich, K.F.1    Goward, S.N.2
  • 23
    • 84957928091 scopus 로고    scopus 로고
    • Band-To-Band Registration and Ortho-Rectification of Multilens/Multispectral Imagery: A Case Study of MiniMCA-12 Acquired by A Fixed-Wing UAS
    • Jhan, J.-P., J.-Y., Rau, and C., Huang. 2016. “Band-To-Band Registration and Ortho-Rectification of Multilens/Multispectral Imagery: A Case Study of MiniMCA-12 Acquired by A Fixed-Wing UAS.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 66–77. doi:10.1016/j.isprsjprs.2016.01.008.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.114 , pp. 66-77
    • Jhan, J.-P.1    Rau, J.-Y.2    Huang, C.3
  • 24
    • 84870707226 scopus 로고    scopus 로고
    • Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing
    • Kelcey, J., and A., Lucieer. 2012. “Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing.” Remote Sensing 4: 1462. doi:10.3390/rs4051462.
    • (2012) Remote Sensing , vol.4 , pp. 1462
    • Kelcey, J.1    Lucieer, A.2
  • 25
    • 85013477757 scopus 로고    scopus 로고
    • Monitoring Canopy Growth and Grain Yield of Paddy Rice in South Korea by Using The Grami Model and High Spatial Resolution Imagery
    • Kim, M., J., Ko, S., Jeong, J., Yeom, and H., Kim. 2017. “Monitoring Canopy Growth and Grain Yield of Paddy Rice in South Korea by Using The Grami Model and High Spatial Resolution Imagery.” GIScience & Remote Sensing 54: 534–551. doi:10.1080/15481603.2017.1291783.
    • (2017) GIScience & Remote Sensing , vol.54 , pp. 534-551
    • Kim, M.1    Ko, J.2    Jeong, S.3    Yeom, J.4    Kim, H.5
  • 27
    • 84875549888 scopus 로고    scopus 로고
    • The Use of Satellite Data for Crop Yield Gap Analysis
    • Lobell, D. B., 2013. “The Use of Satellite Data for Crop Yield Gap Analysis.” Field Crops Research 143: 56–64. doi:10.1016/j.fcr.2012.08.008.
    • (2013) Field Crops Research , vol.143 , pp. 56-64
    • Lobell, D.B.1
  • 28
    • 0037307653 scopus 로고    scopus 로고
    • Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties
    • Lobell, D. B., G. P., Asner, J. I., Ortiz-Monasterio, and T. L., Benning. 2003. “Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties.” Agriculture, Ecosystems and Environment 94: 205–220. doi:10.1016/S0167-8809(02)00021-X.
    • (2003) Agriculture, Ecosystems and Environment , vol.94 , pp. 205-220
    • Lobell, D.B.1    Asner, G.P.2    Ortiz-Monasterio, J.I.3    Benning, T.L.4
  • 29
    • 85038399193 scopus 로고    scopus 로고
    • Regional-Scale Monitoring of Cropland Intensity and Productivity with Multi-Source Satellite Image Time Series
    • Löw, F., C., Biradar, O., Dubovyk, E., Fliemann, A., Akramkhanov, A., Narvaez Vallejo, and F., Waldner. 2018. “Regional-Scale Monitoring of Cropland Intensity and Productivity with Multi-Source Satellite Image Time Series.” GIScience & Remote Sensing 55: 539–567. doi:10.1080/15481603.2017.1414010.
    • (2018) GIScience & Remote Sensing , vol.55 , pp. 539-567
    • Löw, F.1    Biradar, C.2    Dubovyk, O.3    Fliemann, E.4    Akramkhanov, A.5    Narvaez Vallejo, A.6    Waldner, F.7
  • 30
    • 85038021825 scopus 로고    scopus 로고
    • Optimal Spatial Resolution of Unmanned Aerial Vehicle (Uav)-Acquired Imagery for Species Classification in a Heterogeneous Grassland Ecosystem
    • Lu, B., and Y., He. 2018. “Optimal Spatial Resolution of Unmanned Aerial Vehicle (Uav)-Acquired Imagery for Species Classification in a Heterogeneous Grassland Ecosystem.” GIScience & Remote Sensing 55: 205–220. doi:10.1080/15481603.2017.1408930.
    • (2018) GIScience & Remote Sensing , vol.55 , pp. 205-220
    • Lu, B.1    He, Y.2
  • 31
    • 84989347304 scopus 로고    scopus 로고
    • Comparison of Ground and Satellite-Based Methods for Estimating Stand-Level fPAR in a Boreal Forest
    • Majasalmi, T., P., Stenberg, and M., Rautiainen. 2017. “Comparison of Ground and Satellite-Based Methods for Estimating Stand-Level fPAR in a Boreal Forest.” Agricultural and Forest Meteorology 232: 422–432. doi:10.1016/j.agrformet.2016.09.007.
    • (2017) Agricultural and Forest Meteorology , vol.232 , pp. 422-432
    • Majasalmi, T.1    Stenberg, P.2    Rautiainen, M.3
  • 33
    • 84983772252 scopus 로고    scopus 로고
    • Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems
    • Messinger, M., G. P., Asner, and M., Silman. 2016. “Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems.” Remote Sensing 8: 615. doi:10.3390/rs8080615.
    • (2016) Remote Sensing , vol.8 , pp. 615
    • Messinger, M.1    Asner, G.P.2    Silman, M.3
  • 34
    • 84887105216 scopus 로고    scopus 로고
    • Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps
    • Mulla, D. J., 2013. “Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps.” Biosystems Engineering 114: 358–371. doi:10.1016/j.biosystemseng.2012.08.009.
    • (2013) Biosystems Engineering , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 35
    • 0028668149 scopus 로고
    • On the Relationship between FAPAR and NDVI
    • Myneni, R. B., and D. L., Williams. 1994. “On the Relationship between FAPAR and NDVI.” Remote Sensing of Environment 49: 200–211. doi:10.1016/0034-4257(94)90016-7.
    • (1994) Remote Sensing of Environment , vol.49 , pp. 200-211
    • Myneni, R.B.1    Williams, D.L.2
  • 36
    • 0036846394 scopus 로고    scopus 로고
    • Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data
    • Myneni, R. B., S., Hoffman, Y., Knyazikhin, J. L., Privette, J., Glassy, Y., Tian, Y., Wang, et al. 2002. “Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data.” Remote Sensing of Environment 83: 214–231. doi:10.1016/S0034-4257(02)00074-3.
    • (2002) Remote Sensing of Environment , vol.83 , pp. 214-231
    • Myneni, R.B.1    Hoffman, S.2    Knyazikhin, Y.3    Privette, J.L.4    Glassy, J.5    Tian, Y.6    Wang, Y.7
  • 40
    • 0033214078 scopus 로고    scopus 로고
    • An Approach to Spatially Distributed Modeling of Net Primary Production (NPP) at the Landscape Scale and Its Application in Validation of EOS NPP Products
    • Reich, P. B., D. P., Turner, and P., Bolstad. 1999. “An Approach to Spatially Distributed Modeling of Net Primary Production (NPP) at the Landscape Scale and Its Application in Validation of EOS NPP Products.” Remote Sensing of Environment 70: 69–81. doi:10.1016/S0034-4257(99)00058-9.
    • (1999) Remote Sensing of Environment , vol.70 , pp. 69-81
    • Reich, P.B.1    Turner, D.P.2    Bolstad, P.3
  • 41
    • 0032184026 scopus 로고    scopus 로고
    • Estimating fAPAR from Nine Vegetation Indices for Irrigated and Nonirrigated Faba Bean and Semileafless Pea Canopies
    • Ridao, E., J. R., Conde, and M. I., Mı́nguez. 1998. “Estimating fAPAR from Nine Vegetation Indices for Irrigated and Nonirrigated Faba Bean and Semileafless Pea Canopies.” Remote Sensing of Environment 66: 87–100. doi:10.1016/S0034-4257(98)00050-9.
    • (1998) Remote Sensing of Environment , vol.66 , pp. 87-100
    • Ridao, E.1    Conde, J.R.2    Mı́nguez, M.I.3
  • 42
    • 1942424158 scopus 로고    scopus 로고
    • Principal Component Analysis for Hyperspectral Image Classification
    • Rodarmel, C., and J., Shan. 2002. “Principal Component Analysis for Hyperspectral Image Classification.” Surveying and Land Information Science 62: 115–122.
    • (2002) Surveying and Land Information Science , vol.62 , pp. 115-122
    • Rodarmel, C.1    Shan, J.2
  • 43
    • 84912144701 scopus 로고    scopus 로고
    • UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas
    • Salamí, E., C., Barrado, and E., Pastor. 2014. “UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas.” Remote Sensing 6: 11051. doi:10.3390/rs61111051.
    • (2014) Remote Sensing , vol.6 , pp. 11051
    • Salamí, E.1    Barrado, C.2    Pastor, E.3
  • 45
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz, G., 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6: 461–464. doi:10.1214/aos/1176344136.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 47
    • 84906942515 scopus 로고    scopus 로고
    • Recent Applications of Unmanned Aerial Imagery in Natural Resource Management
    • Shahbazi, M., J., Théau, and P., Ménard. 2014. “Recent Applications of Unmanned Aerial Imagery in Natural Resource Management.” GIScience & Remote Sensing 51: 339–365. doi:10.1080/15481603.2014.926650.
    • (2014) GIScience & Remote Sensing , vol.51 , pp. 339-365
    • Shahbazi, M.1    Théau, J.2    Ménard, P.3
  • 48
    • 84983464414 scopus 로고    scopus 로고
    • Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices
    • Sibanda, M., O., Mutanga, and M., Rouget. 2016. “Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices.” GIScience & Remote Sensing 53: 614–633. doi:10.1080/15481603.2016.1221576.
    • (2016) GIScience & Remote Sensing , vol.53 , pp. 614-633
    • Sibanda, M.1    Mutanga, O.2    Rouget, M.3
  • 49
    • 85049955323 scopus 로고    scopus 로고
    • Estimating LAI and Mapping Canopy Storage Capacity for Hydrological Applications in Wattle Infested Ecosystems Using Sentinel-2 MSI Derived Red Edge Bands
    • Sibanda, M., O., Mutanga, T., Dube, T., Vundla, and P. L., Mafongoya. 2018. “Estimating LAI and Mapping Canopy Storage Capacity for Hydrological Applications in Wattle Infested Ecosystems Using Sentinel-2 MSI Derived Red Edge Bands.” GIScience & Remote Sensing. doi:10.1080/15481603.2018.1492213.
    • (2018) GIScience & Remote Sensing
    • Sibanda, M.1    Mutanga, O.2    Dube, T.3    Vundla, T.4    Mafongoya, P.L.5
  • 50
    • 0036330345 scopus 로고    scopus 로고
    • Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages
    • Sims, D. A., and J. A., Gamon. 2002. “Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages.” Remote Sensing of Environment 81: 337–354. doi:10.1016/S0034-4257(02)00010-X.
    • (2002) Remote Sensing of Environment , vol.81 , pp. 337-354
    • Sims, D.A.1    Gamon, J.A.2
  • 51
    • 0032732676 scopus 로고    scopus 로고
    • The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance
    • Smith, G. M., and E. J., Milton. 1999. “The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance.” International Journal of Remote Sensing 20: 2653–2662. doi:10.1080/014311699211994.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 52
    • 84982746811 scopus 로고    scopus 로고
    • Estimation of Fraction of Absorbed Photosynthetically Active Radiation from Multiple Satellite Data: Model Development and Validation
    • Tao, X., S., Liang, T., He, and H., Jin. 2016. “Estimation of Fraction of Absorbed Photosynthetically Active Radiation from Multiple Satellite Data: Model Development and Validation.” Remote Sensing of Environment 184: 539–557. doi:10.1016/j.rse.2016.07.036.
    • (2016) Remote Sensing of Environment , vol.184 , pp. 539-557
    • Tao, X.1    Liang, S.2    He, T.3    Jin, H.4
  • 54
    • 0024929466 scopus 로고
    • Predicting across Scales: Theory Development and Testing
    • Turner, M. G., V. H., Dale, and R. H., Gardner. 1989. “Predicting across Scales: Theory Development and Testing.” Landscape Ecology 3: 245–252. doi:10.1007/BF00131542.
    • (1989) Landscape Ecology , vol.3 , pp. 245-252
    • Turner, M.G.1    Dale, V.H.2    Gardner, R.H.3
  • 56
    • 0029751125 scopus 로고    scopus 로고
    • Effects of Standing Litter on the Biophysical Interpretation of Plant Canopies with Spectral Indices
    • van Leeuwen, W. J. D., and A. R., Huete. 1996. “Effects of Standing Litter on the Biophysical Interpretation of Plant Canopies with Spectral Indices.” Remote Sensing of Environment 55: 123–138. doi:10.1016/0034-4257(95)00198-0.
    • (1996) Remote Sensing of Environment , vol.55 , pp. 123-138
    • van Leeuwen, W.J.D.1    Huete, A.R.2
  • 58
    • 0037470097 scopus 로고    scopus 로고
    • Comparison of Principal Components Regression and Partial Least Squares Regression through Generic Simulations of Complex Mixtures
    • Wentzell, P. D., and L., Vega Montoto. 2003. “Comparison of Principal Components Regression and Partial Least Squares Regression through Generic Simulations of Complex Mixtures.” Chemometrics and Intelligent Laboratory Systems 65: 257–279. doi:10.1016/S0169-7439(02)00138-7.
    • (2003) Chemometrics and Intelligent Laboratory Systems , vol.65 , pp. 257-279
    • Wentzell, P.D.1    Vega Montoto, L.2
  • 59
    • 79151474065 scopus 로고    scopus 로고
    • Method for Automatic Georeferencing Aerial Remote Sensing (RS) Images from an Unmanned Aerial Vehicle (UAV) Platform
    • Xiang, H., and L., Tian. 2011. “Method for Automatic Georeferencing Aerial Remote Sensing (RS) Images from an Unmanned Aerial Vehicle (UAV) Platform.” Biosystems Engineering 108: 104–113. doi:10.1016/j.biosystemseng.2010.11.003.
    • (2011) Biosystems Engineering , vol.108 , pp. 104-113
    • Xiang, H.1    Tian, L.2
  • 60
    • 85026443520 scopus 로고    scopus 로고
    • Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives
    • Yang, G., J., Liu, C., Zhao, Z., Li, Y., Huang, H., Yu, B., Xu, et al. 2017. “Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.” Frontiers in Plant Science 8: 1111. doi:10.3389/fpls.2017.01111.
    • (2017) Frontiers in Plant Science , vol.8 , pp. 1111
    • Yang, G.1    Liu, J.2    Zhao, C.3    Li, Z.4    Huang, Y.5    Yu, H.6    Xu, B.7
  • 61
    • 64549104791 scopus 로고    scopus 로고
    • Imaging Chlorophyll Fluorescence with an Airborne Narrow-Band Multispectral Camera for Vegetation Stress Detection
    • Zarco-Tejada, P. J., J. A. J., Berni, L., Suárez, G., Sepulcre-Cantó, F., Morales, and J. R., Miller. 2009. “Imaging Chlorophyll Fluorescence with an Airborne Narrow-Band Multispectral Camera for Vegetation Stress Detection.” Remote Sensing of Environment 113: 1262–1275. doi:10.1016/j.rse.2009.02.016.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 1262-1275
    • Zarco-Tejada, P.J.1    Berni, J.A.J.2    Suárez, L.3    Sepulcre-Cantó, G.4    Morales, F.5    Miller, J.R.6
  • 62
    • 84874253202 scopus 로고    scopus 로고
    • Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV)
    • Zarco-Tejada, P. J., M. L., Guillén-Climent, R., Hernández-Clemente, A., Catalina, M. R., González, and P., Martín. 2013. “Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV).” Agricultural and Forest Meteorology 171–172: 281–294. doi:10.1016/j.agrformet.2012.12.013.
    • (2013) Agricultural and Forest Meteorology , vol.171-172 , pp. 281-294
    • Zarco-Tejada, P.J.1    Guillén-Climent, M.L.2    Hernández-Clemente, R.3    Catalina, A.4    González, M.R.5    Martín, P.6
  • 63
    • 84962135683 scopus 로고    scopus 로고
    • Seasonal Stability of Chlorophyll Fluorescence Quantified from Airborne Hyperspectral Imagery as an Indicator of Net Photosynthesis in the Context of Precision Agriculture
    • Zarco-Tejada, P. J., M. V., González-Dugo, and E., Fereres. 2016. “Seasonal Stability of Chlorophyll Fluorescence Quantified from Airborne Hyperspectral Imagery as an Indicator of Net Photosynthesis in the Context of Precision Agriculture.” Remote Sensing of Environment 179: 89–103. doi:10.1016/j.rse.2016.03.024.
    • (2016) Remote Sensing of Environment , vol.179 , pp. 89-103
    • Zarco-Tejada, P.J.1    González-Dugo, M.V.2    Fereres, E.3
  • 64
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera
    • Zarco-Tejada, P. J., V., González-Dugo, and J. A. J., Berni. 2012. “Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera.” Remote Sensing of Environment 117: 322–337. doi:10.1016/j.rse.2011.10.007.
    • (2012) Remote Sensing of Environment , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.J.3
  • 65
    • 84868629775 scopus 로고    scopus 로고
    • The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review
    • Zhang, C., and J. M., Kovacs. 2012. “The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review.” Precision Agriculture 13: 693–712. doi:10.1007/s11119-012-9274-5.
    • (2012) Precision Agriculture , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 66
    • 84963541978 scopus 로고    scopus 로고
    • Seeing the Forest from Drones: Testing the Potential of Lightweight Drones as a Tool for Long-Term Forest Monitoring
    • Zhang, J., J., Hu, J., Lian, Z., Fan, X., Ouyang, and W., Ye. 2016. “Seeing the Forest from Drones: Testing the Potential of Lightweight Drones as a Tool for Long-Term Forest Monitoring.” Biological Conservation 198: 60–69. doi:10.1016/j.biocon.2016.03.027.
    • (2016) Biological Conservation , vol.198 , pp. 60-69
    • Zhang, J.1    Hu, J.2    Lian, J.3    Fan, Z.4    Ouyang, X.5    Ye, W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.