메뉴 건너뛰기




Volumn 221, Issue , 2019, Pages 430-443

Deep learning based multi-temporal crop classification

Author keywords

Artificial neural network; Convolutional neural network; Crop classification; Deep learning; Landsat; Multi temporal classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; CROPS; CULTIVATION; DECISION TREES; LONG SHORT-TERM MEMORY; NEURAL NETWORKS; TIME SERIES; WATER MANAGEMENT;

EID: 85057535465     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2018.11.032     Document Type: Article
Times cited : (717)

References (115)
  • 1
    • 85034623511 scopus 로고    scopus 로고
    • Beyond RGB: very high resolution urban remote sensing with multimodal deep networks
    • Audebert, N., Le Saux, B., Lefèvre, S., Beyond RGB: very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140 (2018), 20–32.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.140 , pp. 20-32
    • Audebert, N.1    Le Saux, B.2    Lefèvre, S.3
  • 2
    • 0019895232 scopus 로고
    • Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation
    • Badhwar, G.B., Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation. Remote Sens. Environ. 14 (1984), 31–37.
    • (1984) Remote Sens. Environ. , vol.14 , pp. 31-37
    • Badhwar, G.B.1
  • 3
    • 31344451662 scopus 로고    scopus 로고
    • Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
    • Beck, P.S.A., Atzberger, C., Høgda, K.A., Johansen, B., Skidmore, A.K., Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens. Environ. 100 (2006), 321–334.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 321-334
    • Beck, P.S.A.1    Atzberger, C.2    Høgda, K.A.3    Johansen, B.4    Skidmore, A.K.5
  • 4
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 5
    • 54549091549 scopus 로고    scopus 로고
    • Comparison of phenology trends by land cover class: a case study in the Great Basin, USA
    • Bradley, B.A., Mustard, J.F., Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob. Chang. Biol. 14 (2008), 334–346.
    • (2008) Glob. Chang. Biol. , vol.14 , pp. 334-346
    • Bradley, B.A.1    Mustard, J.F.2
  • 6
    • 33845883788 scopus 로고    scopus 로고
    • A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
    • Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F., A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106 (2007), 137–145.
    • (2007) Remote Sens. Environ. , vol.106 , pp. 137-145
    • Bradley, B.A.1    Jacob, R.W.2    Hermance, J.F.3    Mustard, J.F.4
  • 8
    • 77955273934 scopus 로고    scopus 로고
    • The response of African land surface phenology to large scale climate oscillations
    • Brown, M.E., de Beurs, K., Vrieling, A., The response of African land surface phenology to large scale climate oscillations. Remote Sens. Environ. 114 (2010), 2286–2296.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2286-2296
    • Brown, M.E.1    de Beurs, K.2    Vrieling, A.3
  • 9
    • 39749111391 scopus 로고    scopus 로고
    • Contribution of multispectral and multitemporal information from MODIS images to land cover classification
    • Carrão, H., Gonçalves, P., Caetano, M., Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens. Environ. 112 (2008), 986–997.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 986-997
    • Carrão, H.1    Gonçalves, P.2    Caetano, M.3
  • 11
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • Chapelle, O., Haffner, P., Vapnik, V.N., Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10 (1999), 1055–1064.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 13
    • 2942739366 scopus 로고    scopus 로고
    • A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter
    • Chen, J., Jonsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 91 (2004), 332–344.
    • (2004) Remote Sens. Environ. , vol.91 , pp. 332-344
    • Chen, J.1    Jonsson, P.2    Tamura, M.3    Gu, Z.4    Matsushita, B.5    Eklundh, L.6
  • 14
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Chen, X., Xiang, S., Liu, C.-., Pan, C.-., Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 11 (2014), 1797–1801.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.3    Pan, C.4
  • 16
    • 48749146658 scopus 로고
    • The epistemology of a rule-based expert system—a framework for explanation
    • Clancey, W.J., The epistemology of a rule-based expert system—a framework for explanation. Artif. Intell. 20 (1983), 215–251.
    • (1983) Artif. Intell. , vol.20 , pp. 215-251
    • Clancey, W.J.1
  • 17
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Connor, J.T., Martin, R.D., Atlas, L.E., Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5 (1994), 240–254.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 240-254
    • Connor, J.T.1    Martin, R.D.2    Atlas, L.E.3
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 85027952507 scopus 로고    scopus 로고
    • Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States
    • Dannenberg, M.P., Song, C., Hwang, T., Wise, E.K., Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States. Remote Sens. Environ. 159 (2015), 167–180.
    • (2015) Remote Sens. Environ. , vol.159 , pp. 167-180
    • Dannenberg, M.P.1    Song, C.2    Hwang, T.3    Wise, E.K.4
  • 20
    • 85027922810 scopus 로고    scopus 로고
    • Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms
    • Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 160 (2015), 99–113.
    • (2015) Remote Sens. Environ. , vol.160 , pp. 99-113
    • Dong, J.1    Xiao, X.2    Kou, W.3    Qin, Y.4    Zhang, G.5    Li, L.6
  • 21
    • 33750061021 scopus 로고    scopus 로고
    • Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure
    • Evans, J.P., Geerken, R., Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure. Remote Sens. Environ. 105 (2006), 1–8.
    • (2006) Remote Sens. Environ. , vol.105 , pp. 1-8
    • Evans, J.P.1    Geerken, R.2
  • 22
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?. J. Mach. Learn. Res. 15 (2014), 3133–3181.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3133-3181
    • Fernandez-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 23
    • 34250642381 scopus 로고    scopus 로고
    • Cross-scalar satellite phenology from ground, Landsat, and MODIS data
    • Fisher, J.I., Mustard, J.F., Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 109 (2007), 261–273.
    • (2007) Remote Sens. Environ. , vol.109 , pp. 261-273
    • Fisher, J.I.1    Mustard, J.F.2
  • 24
    • 30544439121 scopus 로고    scopus 로고
    • Green leaf phenology at Landsat resolution: scaling from the field to the satellite
    • Fisher, J.I., Mustard, J.F., Vadeboncoeur, M.A., Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sens. Environ. 100 (2006), 265–279.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 265-279
    • Fisher, J.I.1    Mustard, J.F.2    Vadeboncoeur, M.A.3
  • 25
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl, M.A., Brodley, C.E., Strahler, A.H., Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 37 (1999), 969–977.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 26
    • 56949101300 scopus 로고    scopus 로고
    • Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe
    • Funk, C., Budde, M.E., Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sens. Environ. 113 (2009), 115–125.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 115-125
    • Funk, C.1    Budde, M.E.2
  • 27
    • 38049035787 scopus 로고    scopus 로고
    • Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
    • Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 112 (2008), 576–587.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 576-587
    • Galford, G.L.1    Mustard, J.F.2    Melillo, J.3    Gendrin, A.4    Cerri, C.C.5    Cerri, C.E.P.6
  • 28
    • 67649641784 scopus 로고    scopus 로고
    • An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change
    • Geerken, R.A., An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS J. Photogramm. Remote Sens. 64 (2009), 422–431.
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , pp. 422-431
    • Geerken, R.A.1
  • 29
    • 84966708311 scopus 로고    scopus 로고
    • Circumpolar vegetation dynamics product for global change study
    • Gonsamo, A., Chen, J.M., Circumpolar vegetation dynamics product for global change study. Remote Sens. Environ. 182 (2016), 13–26.
    • (2016) Remote Sens. Environ. , vol.182 , pp. 13-26
    • Gonsamo, A.1    Chen, J.M.2
  • 30
    • 85021141369 scopus 로고    scopus 로고
    • One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
    • Guidici, D., Clark, M.L., One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote Sens., 9, 2017, 629.
    • (2017) Remote Sens. , vol.9 , pp. 629
    • Guidici, D.1    Clark, M.L.2
  • 32
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., Deep convolutional neural networks for hyperspectral image classification. J. Sens., 2015, 2015.
    • (2015) J. Sens. , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 33
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F., Xia, G., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7 (2015), 14680–14707.
    • (2015) Remote Sens. , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.2    Hu, J.3    Zhang, L.4
  • 34
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83 (2002), 195–213.
    • (2002) Remote Sens. Environ. , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.4    Gao, X.5    Ferreira, L.6
  • 36
    • 5144233854 scopus 로고    scopus 로고
    • TIMESAT—a program for analyzing time-series of satellite sensor data
    • Jönsson, P., Eklundh, L., TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30 (2004), 833–845.
    • (2004) Comput. Geosci. , vol.30 , pp. 833-845
    • Jönsson, P.1    Eklundh, L.2
  • 37
    • 85039055773 scopus 로고    scopus 로고
    • Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional
    • Kampffmeyer, M., Salberg, A., Jenssen, R., Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional. Neural Netw., 2016, 1–9.
    • (2016) Neural Netw. , pp. 1-9
    • Kampffmeyer, M.1    Salberg, A.2    Jenssen, R.3
  • 38
    • 85118259703 scopus 로고    scopus 로고
    • A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products
    • Kandasamy, S., Baret, F., Verger, A., Neveux, P., Weiss, M., A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products. Biogeosciences 10 (2013), 4055–4071.
    • (2013) Biogeosciences , vol.10 , pp. 4055-4071
    • Kandasamy, S.1    Baret, F.2    Verger, A.3    Neveux, P.4    Weiss, M.5
  • 39
    • 84941620184 scopus 로고    scopus 로고
    • Adam: a method for stochastic optimization
    • arXiv:1412.6980, arXiv preprint
    • Kingma, D.P., Ba, J., Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
    • (2014)
    • Kingma, D.P.1    Ba, J.2
  • 41
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14 (2017), 778–782.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 42
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence, R.L., Wood, S.D., Sheley, R.L., Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 100 (2006), 356–362.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 44
    • 84993997577 scopus 로고    scopus 로고
    • Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
    • Li, W., Fu, H., Yu, L., Gong, P., Feng, D., Li, C., et al. Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. Int. J. Remote Sens. 37 (2016), 5632–5646.
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 5632-5646
    • Li, W.1    Fu, H.2    Yu, L.3    Gong, P.4    Feng, D.5    Li, C.6
  • 45
    • 85010690651 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network
    • Li, Y., Zhang, H., Shen, Q., Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens., 9, 2017, 67.
    • (2017) Remote Sens. , vol.9 , pp. 67
    • Li, Y.1    Zhang, H.2    Shen, Q.3
  • 46
    • 85010660533 scopus 로고    scopus 로고
    • Deep learning based oil palm tree detection and counting for high-resolution remote sensing images
    • Li, W., Fu, H., Yu, L., Cracknell, A., Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens., 9, 2017.
    • (2017) Remote Sens. , vol.9
    • Li, W.1    Fu, H.2    Yu, L.3    Cracknell, A.4
  • 47
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., Wiener, M., Classification and regression by randomForest. R News 2 (2002), 18–22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 48
    • 0025573354 scopus 로고
    • A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
    • Lloyd, D., A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 11 (1990), 2269–2279.
    • (1990) Int. J. Remote Sens. , vol.11 , pp. 2269-2279
    • Lloyd, D.1
  • 49
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • Lyu, H., Lu, H., Mou, L., Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens., 8, 2016, 506.
    • (2016) Remote Sens. , vol.8 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 50
    • 85044202715 scopus 로고    scopus 로고
    • Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data
    • Lyu, H., Lu, H., Mou, L., Li, W., Wright, J., Li, X., et al. Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data. Remote Sens., 10, 2018, 471.
    • (2018) Remote Sens. , vol.10 , pp. 471
    • Lyu, H.1    Lu, H.2    Mou, L.3    Li, W.4    Wright, J.5    Li, X.6
  • 52
    • 85042151311 scopus 로고    scopus 로고
    • Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models
    • Marcos, D., Volpi, M., Kellenberger, B., Tuia, D., Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models. ISPRS J. Photogramm. Remote Sens. 145 (2018), 96–107.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.145 , pp. 96-107
    • Marcos, D.1    Volpi, M.2    Kellenberger, B.3    Tuia, D.4
  • 54
    • 85055883946 scopus 로고    scopus 로고
    • RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images
    • arXiv:1805.02091, arXiv preprint
    • Mou, L., Zhu, X.X., RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images. arXiv preprint arXiv:1805.02091, 2018.
    • (2018)
    • Mou, L.1    Zhu, X.X.2
  • 55
    • 85032438871 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification
    • Mou, L., Ghamisi, P., Zhu, X.X., Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens., 2018.
    • (2018) IEEE Trans. Geosci. Remote Sens.
    • Mou, L.1    Ghamisi, P.2    Zhu, X.X.3
  • 56
    • 85046466737 scopus 로고    scopus 로고
    • Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
    • arXiv:1803.02642, arXiv preprint
    • Mou, L., Bruzzone, L., Zhu, X.X., Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. arXiv preprint arXiv:1803.02642, 2018.
    • (2018)
    • Mou, L.1    Bruzzone, L.2    Zhu, X.X.3
  • 57
    • 79959669722 scopus 로고    scopus 로고
    • Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data
    • Na, X., Zhang, S., Li, X., Yu, H., Liu, C., Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data. Photogramm. Eng. Remote. Sens. 76 (2010), 833–840.
    • (2010) Photogramm. Eng. Remote. Sens. , vol.76 , pp. 833-840
    • Na, X.1    Zhang, S.2    Li, X.3    Yu, H.4    Liu, C.5
  • 58
    • 0028584840 scopus 로고
    • Fourier-series for analysis of temporal sequences of satellite sensor imagery
    • Olsson, L., Eklundh, L., Fourier-series for analysis of temporal sequences of satellite sensor imagery. Int. J. Remote Sens. 15 (1994), 3735–3741.
    • (1994) Int. J. Remote Sens. , vol.15 , pp. 3735-3741
    • Olsson, L.1    Eklundh, L.2
  • 61
    • 84953405534 scopus 로고    scopus 로고
    • Pattern Recognition and Neural Networks
    • Cambridge university press
    • Ripley, B.D., Pattern Recognition and Neural Networks. 2007, Cambridge university press.
    • (2007)
    • Ripley, B.D.1
  • 62
    • 0034032510 scopus 로고    scopus 로고
    • Reconstructing cloudfree NDVI composites using Fourier analysis of time series
    • Roerink, G.J., Menenti, M., Verhoef, W., Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 21 (2000), 1911–1917.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1911-1917
    • Roerink, G.J.1    Menenti, M.2    Verhoef, W.3
  • 63
    • 0036221284 scopus 로고    scopus 로고
    • A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
    • Rogan, J., Franklin, J., Roberts, D.A., A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 80 (2002), 143–156.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 143-156
    • Rogan, J.1    Franklin, J.2    Roberts, D.A.3
  • 65
    • 85046448909 scopus 로고    scopus 로고
    • Multi-temporal land cover classification with sequential recurrent encoders
    • Rußwurm, M., Körner, M., Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geoinf., 7, 2018, 129.
    • (2018) ISPRS Int. J. Geoinf. , vol.7 , pp. 129
    • Rußwurm, M.1    Körner, M.2
  • 67
    • 29244449072 scopus 로고    scopus 로고
    • Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers
    • Sakamoto, T., Van Nguyen, N., Ohno, H., Ishitsuka, N., Yokozawa, M., Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 100 (2006), 1–16.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 1-16
    • Sakamoto, T.1    Van Nguyen, N.2    Ohno, H.3    Ishitsuka, N.4    Yokozawa, M.5
  • 69
    • 79957630538 scopus 로고    scopus 로고
    • Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data
    • Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 49 (2011), 1926–1936.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 1926-1936
    • Sakamoto, T.1    Wardlow, B.D.2    Gitelson, A.A.3
  • 70
    • 84872872459 scopus 로고    scopus 로고
    • MODIS-based corn grain yield estimation model incorporating crop phenology information
    • Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 131 (2013), 215–231.
    • (2013) Remote Sens. Environ. , vol.131 , pp. 215-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 71
    • 84897374226 scopus 로고    scopus 로고
    • Near real-time prediction of U.S. corn yields based on time-series MODIS data
    • Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 147 (2014), 219–231.
    • (2014) Remote Sens. Environ. , vol.147 , pp. 219-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 72
    • 84952019779 scopus 로고    scopus 로고
    • An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
    • Shao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S., Campbell, J.B., An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 174 (2016), 258–265.
    • (2016) Remote Sens. Environ. , vol.174 , pp. 258-265
    • Shao, Y.1    Lunetta, R.S.2    Wheeler, B.3    Iiames, J.S.4    Campbell, J.B.5
  • 73
    • 85011384474 scopus 로고    scopus 로고
    • Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
    • arXiv:1606.02585, arXiv preprint
    • Sherrah, J., Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585, 2016.
    • (2016)
    • Sherrah, J.1
  • 74
    • 84988416232 scopus 로고    scopus 로고
    • An assessment of algorithmic parameters affecting image classification accuracy by random forests
    • Shi, D., Yang, X., An assessment of algorithmic parameters affecting image classification accuracy by random forests. Photogramm. Eng. Remote. Sens. 82 (2016), 407–417.
    • (2016) Photogramm. Eng. Remote. Sens. , vol.82 , pp. 407-417
    • Shi, D.1    Yang, X.2
  • 75
    • 84937897682 scopus 로고    scopus 로고
    • A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data
    • Siachalou, S., Mallinis, G., Tsakiri-Strati, M., A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens., 7, 2015.
    • (2015) Remote Sens. , vol.7
    • Siachalou, S.1    Mallinis, G.2    Tsakiri-Strati, M.3
  • 77
    • 37249015863 scopus 로고    scopus 로고
    • The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
    • Simonneaux, V., Duchemin, B., Helson, D., Er-Raki, S., Olioso, A., Chehbouni, A.G., The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 29 (2008), 95–116.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 95-116
    • Simonneaux, V.1    Duchemin, B.2    Helson, D.3    Er-Raki, S.4    Olioso, A.5    Chehbouni, A.G.6
  • 78
    • 41449115901 scopus 로고    scopus 로고
    • Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
    • Soudani, K., le Maire, G., Dufrene, E., Francois, C., Delpierre, N., Ulrich, E., et al. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ. 112 (2008), 2643–2655.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2643-2655
    • Soudani, K.1    le Maire, G.2    Dufrene, E.3    Francois, C.4    Delpierre, N.5    Ulrich, E.6
  • 82
    • 0000775455 scopus 로고    scopus 로고
    • A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992)
    • Verhoef, W., Menenti, M., Azzali, S., A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992). Int. J. Remote Sens. 17 (1996), 231–235.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 231-235
    • Verhoef, W.1    Menenti, M.2    Azzali, S.3
  • 84
    • 4043166894 scopus 로고    scopus 로고
    • Remote sensing - monitoring maize (Zea mays L.) phenology with remote sensing
    • Vina, A., Gitelson, A.A., Rundquist, D.C., Keydan, G., Leavitt, B., Schepers, J., Remote sensing - monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J. 96 (2004), 1139–1147.
    • (2004) Agron. J. , vol.96 , pp. 1139-1147
    • Vina, A.1    Gitelson, A.A.2    Rundquist, D.C.3    Keydan, G.4    Leavitt, B.5    Schepers, J.6
  • 85
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55 (2017), 881–893.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 86
    • 84893568430 scopus 로고    scopus 로고
    • Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data
    • Walker, J.J., de Beurs, K.M., Wynne, R.H., Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens. Environ. 144 (2014), 85–97.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 85-97
    • Walker, J.J.1    de Beurs, K.M.2    Wynne, R.H.3
  • 87
    • 84929317289 scopus 로고    scopus 로고
    • Land surface phenology along urban to rural gradients in the U.S. Great Plains
    • Walker, J.J., de Beurs, K.M., Henebry, G.M., Land surface phenology along urban to rural gradients in the U.S. Great Plains. Remote Sens. Environ. 165 (2015), 42–52.
    • (2015) Remote Sens. Environ. , vol.165 , pp. 42-52
    • Walker, J.J.1    de Beurs, K.M.2    Henebry, G.M.3
  • 88
    • 85028702520 scopus 로고    scopus 로고
    • Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
    • Wan, X., Zhao, C., Wang, Y., Liu, W., Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features. Infrared Phys. Technol. 86 (2017), 77–89.
    • (2017) Infrared Phys. Technol. , vol.86 , pp. 77-89
    • Wan, X.1    Zhao, C.2    Wang, Y.3    Liu, W.4
  • 89
    • 84863235626 scopus 로고    scopus 로고
    • Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting
    • Wang, H., Chen, J., Wu, Z., Lin, H., Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting. Int. J. Remote Sens. 33 (2012), 1905–1916.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 1905-1916
    • Wang, H.1    Chen, J.2    Wu, Z.3    Lin, H.4
  • 90
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
    • Wardlow, B.D., Egbert, S.L., Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains. Remote Sens. Environ. 112 (2008), 1096–1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 91
    • 85057562052 scopus 로고    scopus 로고
    • U.S. Geological Survey Science (USGS) Land Satellites Data System (LSDS) research and development
    • (Accessed 22 October 2018)
    • WWW1, U.S. Geological Survey Science (USGS) Land Satellites Data System (LSDS) research and development. https://espa.cr.usgs.gov/. (Accessed 22 October 2018)
    • WWW11
  • 92
    • 85034218368 scopus 로고    scopus 로고
    • Keras: the Python deep learning library
    • (Accessed 22 October 2018)
    • WWW2, Keras: the Python deep learning library. https://keras.io/. (Accessed 22 October 2018)
    • WWW21
  • 93
    • 85057541279 scopus 로고    scopus 로고
    • Tensorflow: an open source software library for high performance numerical computation
    • (Accessed 22 October 2018)
    • WWW3, Tensorflow: an open source software library for high performance numerical computation. https://www.tensorflow.org. (Accessed 22 October 2018)
    • WWW31
  • 94
    • 84891766046 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in Python
    • (Accessed 22 October 2018)
    • WWW4, Scikit-learn: machine learning in Python. http://scikit-learn.org/. (Accessed 22 October 2018)
    • WWW41
  • 95
    • 85057554607 scopus 로고    scopus 로고
    • XGBoost documentation, Python API reference
    • (Accessed 22 October 2018)
    • WWW5, XGBoost documentation, Python API reference. https://xgboost.readthedocs.io/en/latest/python/python_api.html. (Accessed 22 October 2018)
    • WWW51
  • 96
    • 16344375302 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
    • Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 95 (2005), 480–492.
    • (2005) Remote Sens. Environ. , vol.95 , pp. 480-492
    • Xiao, X.1    Boles, S.2    Liu, J.3    Zhuang, D.4    Frolking, S.5    Li, C.6
  • 97
    • 29244490029 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
    • Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J.Y., Salas, W., et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100 (2006), 95–113.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 95-113
    • Xiao, X.1    Boles, S.2    Frolking, S.3    Li, C.4    Babu, J.Y.5    Salas, W.6
  • 98
    • 77549088874 scopus 로고    scopus 로고
    • Remote sensing imagery in vegetation mapping: a review
    • Xie, Y., Sha, Z., Yu, M., Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1 (2008), 9–23.
    • (2008) J. Plant Ecol. , vol.1 , pp. 9-23
    • Xie, Y.1    Sha, Z.2    Yu, M.3
  • 99
    • 85027924638 scopus 로고    scopus 로고
    • Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics
    • Xin, Q., Broich, M., Zhu, P., Gong, P., Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 161 (2015), 63–77.
    • (2015) Remote Sens. Environ. , vol.161 , pp. 63-77
    • Xin, Q.1    Broich, M.2    Zhu, P.3    Gong, P.4
  • 100
    • 84959091021 scopus 로고    scopus 로고
    • Understanding neural networks through deep visualization
    • arXiv:1506.06579, arXiv preprint
    • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.
    • (2015)
    • Yosinski, J.1    Clune, J.2    Nguyen, A.3    Fuchs, T.4    Lipson, H.5
  • 101
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue, J., Zhao, W., Mao, S., Liu, H., Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6 (2015), 468–477.
    • (2015) Remote Sens. Lett. , vol.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 102
    • 84944053926 scopus 로고    scopus 로고
    • Recurrent neural network regularization
    • arXiv:1409.2329, arXiv preprint
    • Zaremba, W., Sutskever, I., Vinyals, O., Recurrent neural network regularization. arXiv preprint arXiv:1409.2329, 2014.
    • (2014)
    • Zaremba, W.1    Sutskever, I.2    Vinyals, O.3
  • 105
    • 54849406874 scopus 로고    scopus 로고
    • Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data
    • Zhang, M., Zhou, Q., Chen, Z., Liu, J., Zhou, Y., Cai, C., Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 10 (2008), 476–485.
    • (2008) Int. J. Appl. Earth Obs. Geoinf. , vol.10 , pp. 476-485
    • Zhang, M.1    Zhou, Q.2    Chen, Z.3    Liu, J.4    Zhou, Y.5    Cai, C.6
  • 106
    • 84901319847 scopus 로고    scopus 로고
    • Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information
    • Zhang, J., Feng, L., Yao, F., Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information. ISPRS J. Photogramm. Remote Sens. 94 (2014), 102–113.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.94 , pp. 102-113
    • Zhang, J.1    Feng, L.2    Yao, F.3
  • 107
    • 84930936529 scopus 로고    scopus 로고
    • Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data
    • Zhang, G., Xiao, X., Dong, J., Kou, W., Jin, C., Qin, Y., et al. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 106 (2015), 157–171.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.106 , pp. 157-171
    • Zhang, G.1    Xiao, X.2    Dong, J.3    Kou, W.4    Jin, C.5    Qin, Y.6
  • 108
    • 84979492674 scopus 로고    scopus 로고
    • Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
    • Zhao, W., Du, S., Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54 (2016), 4544–4554.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 109
    • 82055192022 scopus 로고    scopus 로고
    • A phenology-based approach to map crop types in the San Joaquin Valley, California
    • Zhong, L., Hawkins, T., Biging, G., Gong, P., A phenology-based approach to map crop types in the San Joaquin Valley, California. Int. J. Remote Sens. 32 (2011), 7777–7804.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 7777-7804
    • Zhong, L.1    Hawkins, T.2    Biging, G.3    Gong, P.4
  • 110
    • 84868019256 scopus 로고    scopus 로고
    • Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley
    • Zhong, L., Gong, P., Biging, G.S., Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley. Photogramm. Eng. Remote. Sens. 78 (2012), 799–813.
    • (2012) Photogramm. Eng. Remote. Sens. , vol.78 , pp. 799-813
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 111
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
    • Zhong, L., Gong, P., Biging, G.S., Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens. Environ. 140 (2014), 1–13.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 113
    • 84994607536 scopus 로고    scopus 로고
    • Rapid corn and soybean mapping in US Corn Belt and neighboring areas
    • Zhong, L., Yu, L., Li, X., Hu, L., Gong, P., Rapid corn and soybean mapping in US Corn Belt and neighboring areas. Sci. Rep., 6, 2016, 36240.
    • (2016) Sci. Rep. , vol.6
    • Zhong, L.1    Yu, L.2    Li, X.3    Hu, L.4    Gong, P.5
  • 114
    • 85040367775 scopus 로고    scopus 로고
    • Deep learning in remote sensing: a comprehensive review and list of resources
    • Zhu, X.X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., et al. Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5 (2017), 8–36.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , pp. 8-36
    • Zhu, X.X.1    Tuia, D.2    Mou, L.3    Xia, G.4    Zhang, L.5    Xu, F.6
  • 115
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Zou, Q., Ni, L., Zhang, T., Wang, Q., Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12 (2015), 2321–2325.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.