메뉴 건너뛰기




Volumn 10, Issue 11, 2018, Pages

Deep learning with unsupervised data labeling for weed detection in line crops in UAV images

Author keywords

Crop line detection; Deep learning; Image processing; Precision agriculture; Unmanned aerial vehicle; Weed detection

Indexed keywords

AIRCRAFT DETECTION; ANTENNAS; CROPS; ENVIRONMENTAL IMPACT; HERBICIDES; IMAGE PROCESSING; NEURONS; PRECISION AGRICULTURE; UNMANNED AERIAL VEHICLES (UAV); WEED CONTROL;

EID: 85057073177     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10111690     Document Type: Article
Times cited : (252)

References (61)
  • 1
    • 85057110132 scopus 로고    scopus 로고
    • ECPA: Brussels, Belgium
    • European Crop Protection. With or Without Pesticides? ECPA: Brussels, Belgium, 2017
    • (2017) With or Without Pesticides?
  • 2
    • 33646235855 scopus 로고    scopus 로고
    • Crop losses to pests
    • Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31
    • (2006) J. Agric. Sci , vol.144 , pp. 31
    • Oerke, E.C.1
  • 3
    • 0001772065 scopus 로고    scopus 로고
    • Aspects of Precision Agriculture
    • Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. Adv. Agron. 1999, 67, 1-85
    • (1999) Adv. Agron , vol.67 , pp. 1-85
    • Pierce, F.J.1    Nowak, P.2
  • 5
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358-371
    • (2013) Biosyst. Eng , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 7
    • 84886729836 scopus 로고    scopus 로고
    • Ground-level hyperspectral imagery for detecting weeds in wheat fields
    • Herrmann, I.; Shapira, U.; Kinast, S.; Karnieli, A.; Bonfil, D.J. Ground-level hyperspectral imagery for detecting weeds in wheat fields. Precis. Agric. 2013, 14, 637-659
    • (2013) Precis. Agric , vol.14 , pp. 637-659
    • Herrmann, I.1    Shapira, U.2    Kinast, S.3    Karnieli, A.4    Bonfil, D.J.5
  • 9
    • 84926633657 scopus 로고    scopus 로고
    • An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops
    • Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43-52
    • (2015) Comput. Electron. Agric , vol.114 , pp. 43-52
    • Torres-Sánchez, J.1    López-Granados, F.2    Peña, J.M.3
  • 10
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: A review
    • Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693-712
    • (2012) Precis. Agric , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 13
    • 84969174961 scopus 로고    scopus 로고
    • A survey of image processing techniques for plant extraction and segmentation in the field
    • Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184-199
    • (2016) Comput. Electron. Agric , vol.125 , pp. 184-199
    • Hamuda, E.1    Glavin, M.2    Jones, E.3
  • 15
    • 0029110322 scopus 로고
    • Color indices for weed identification under various soil, residue, and lighting conditions
    • Woebbecke, D.; Meyer, G.; Von Bargen, K.; Mortensen, D. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259-269
    • (1995) Trans. ASAE , vol.38 , pp. 259-269
    • Woebbecke, D.1    Meyer, G.2    Von Bargen, K.3    Mortensen, D.4
  • 16
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66
    • (1979) IEEE Trans. Syst. Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 18
    • 84885398102 scopus 로고    scopus 로고
    • Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images
    • Peña, J.M.; Torres-Sánchez, J.; Isabel De Castro, A.; Kelly, M.; López-Granados, F. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE 2013, 8
    • (2013) PLoS ONE , pp. 8
    • Peña, J.M.1    Torres-Sánchez, J.2    Isabel De Castro, A.3    Kelly, M.4    López-Granados, F.5
  • 19
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 20
    • 0242318898 scopus 로고    scopus 로고
    • Classification of Broadleaf and GrassWeeds Using GaborWavelets and an Artificial Neural Network
    • Tang, L.; Tian, L.; Steward, B.L. Classification of Broadleaf and GrassWeeds Using GaborWavelets and an Artificial Neural Network. Trans. Am. Soc. Agric. Eng. 2003, 46, 1247-1254
    • (2003) Trans. Am. Soc. Agric. Eng , vol.46 , pp. 1247-1254
    • Tang, L.1    Tian, L.2    Steward, B.L.3
  • 21
    • 79959824303 scopus 로고    scopus 로고
    • Robust crop and weed segmentation under uncontrolled outdoor illumination
    • Jeon, H.Y.; Tian, L.F.; Zhu, H. Robust crop and weed segmentation under uncontrolled outdoor illumination. Sensors 2011, 11, 6270-6283
    • (2011) Sensors , vol.11 , pp. 6270-6283
    • Jeon, H.Y.1    Tian, L.F.2    Zhu, H.3
  • 22
    • 84863671281 scopus 로고    scopus 로고
    • Classification of crops and weeds from digital images: A support vector machine approach
    • Ahmed, F.; Al-Mamun, H.A.; Bari, A.S.M.H.; Hossain, E.; Kwan, P. Classification of crops and weeds from digital images: A support vector machine approach. Crop Protect. 2012, 40, 98-104
    • (2012) Crop Protect , vol.40 , pp. 98-104
    • Ahmed, F.1    Al-Mamun, H.A.2    Bari, A.S.M.H.3    Hossain, E.4    Kwan, P.5
  • 25
    • 85014406315 scopus 로고    scopus 로고
    • Weed segmentation using texture features extracted from wavelet sub-images
    • Bakhshipour, A.; Jafari, A.; Nassiri, S.M.; Zare, D. Weed segmentation using texture features extracted from wavelet sub-images. Biosyst. Eng. 2017, 157, 1-12
    • (2017) Biosyst. Eng , vol.157 , pp. 1-12
    • Bakhshipour, A.1    Jafari, A.2    Nassiri, S.M.3    Zare, D.4
  • 26
    • 85039770602 scopus 로고    scopus 로고
    • Evaluation of support vector machine and artificial neural networks in weed detection using shape features
    • Bakhshipour, A.; Jafari, A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 2018, 145, 153-160
    • (2018) Comput. Electron. Agric , vol.145 , pp. 153-160
    • Bakhshipour, A.1    Jafari, A.2
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2323
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2323
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 84920065888 scopus 로고    scopus 로고
    • Feature Learning Based Approach for Weed Classification Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV
    • Hung, C.; Xu, Z.; Sukkarieh, S. Feature Learning Based Approach for Weed Classification Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV. Remote Sens. 2014, 6, 12037-12054
    • (2014) Remote Sens , vol.6 , pp. 12037-12054
    • Hung, C.1    Xu, Z.2    Sukkarieh, S.3
  • 32
    • 85030219679 scopus 로고    scopus 로고
    • Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks
    • Milioto, A.; Lottes, P.; Stachniss, C. Real-time blob-wise sugar beets vs. weeds classification for monitoring fields using convolutional neural networks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W3, 41-48
    • (2017) ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci , vol.4 , Issue.2 W3 , pp. 41-48
    • Milioto, A.1    Lottes, P.2    Stachniss, C.3
  • 34
    • 85047510752 scopus 로고    scopus 로고
    • Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information
    • Louargant, M.; Jones, G.; Faroux, R.; Paoli, J.N.; Maillot, T.; Gée, C.; Villette, S. Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information. Remote Sens. 2018, 10, 761
    • (2018) Remote Sens , vol.10 , pp. 761
    • Louargant, M.1    Jones, G.2    Faroux, R.3    Paoli, J.N.4    Maillot, T.5    Gée, C.6    Villette, S.7
  • 35
    • 58349099809 scopus 로고    scopus 로고
    • Modelling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance
    • Jones, G.; Gée, C.; Truchetet, F. Modelling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance. Precis. Agric. 2009, 10, 1-15
    • (2009) Precis. Agric , vol.10 , pp. 1-15
    • Jones, G.1    Gée, C.2    Truchetet, F.3
  • 37
  • 43
    • 85029395781 scopus 로고    scopus 로고
    • Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data
    • Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907
    • (2017) Remote Sens , vol.9 , pp. 907
    • Huang, Z.1    Pan, Z.2    Lei, B.3
  • 46
    • 77956142149 scopus 로고    scopus 로고
    • HOG-based approach for leaf classification. Advanced Intelligent Computing Theories and Applications
    • Changsha:China, 18-21 August 2010, Springer: Berlin/Heidelberg, Germany
    • Xiao, X.Y.; Hu, R.; Zhang, S.W.;Wang, X.F. HOG-based approach for leaf classification. Advanced Intelligent Computing Theories and Applications. In Proceedings of the 6th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, 18-21 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6216, pp. 149-155
    • (2010) Proceedings of the 6th International Conference on Intelligent Computing, ICIC 2010 , vol.6216 , pp. 149-155
    • Xiao, X.Y.1    Hu, R.2    Zhang, S.W.3    Wang, X.F.4
  • 48
    • 0015680481 scopus 로고
    • Textural Features for Image Classification
    • Haralick, R.M.; Shanmugam, K. Textural Features for Image Classification. Syst. Man Cybern. 1973, 3, 610-621
    • (1973) Syst. Man Cybern , vol.3 , pp. 610-621
    • Haralick, R.M.1    Shanmugam, K.2
  • 50
    • 0033097007 scopus 로고    scopus 로고
    • Texture analysis of sar sea ice imagery using gray level co-occurrence matrices
    • Soh, L.K.; Tsatsoulis, C. Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780-795
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , pp. 780-795
    • Soh, L.K.1    Tsatsoulis, C.2
  • 51
    • 85021181472 scopus 로고    scopus 로고
    • Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters
    • Brynolfsson, P.; Nilsson, D.; Torheim, T.; Asklund, T.; Karlsson, C.T.; Trygg, J.; Nyholm, T.; Garpebring, A. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci. Rep. 2017, 7, 4041
    • (2017) Sci. Rep , vol.7 , pp. 4041
    • Brynolfsson, P.1    Nilsson, D.2    Torheim, T.3    Asklund, T.4    Karlsson, C.T.5    Trygg, J.6    Nyholm, T.7    Garpebring, A.8
  • 53
    • 0029700397 scopus 로고    scopus 로고
    • Texture analysis using Gabor wavelets
    • Naghdy, G.A. Texture analysis using Gabor wavelets. Proc. SPIE 1996, 2657, 74-85
    • (1996) Proc. SPIE , vol.2657 , pp. 74-85
    • Naghdy, G.A.1
  • 54
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 56
    • 84996922087 scopus 로고    scopus 로고
    • Special object extraction from medieval books using superpixels and bag-of-features
    • Yang, Y.; Rushmeier, H. Special object extraction from medieval books using superpixels and bag-of-features. J. Electron. Imaging 2016, 26, 011008
    • (2016) J. Electron. Imaging , vol.26
    • Yang, Y.1    Rushmeier, H.2
  • 58
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 61
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.