메뉴 건너뛰기




Volumn , Issue , 2004, Pages 301-320

Measurement-based statistical fusion methods for distributed sensor networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85056055649     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (2)

References (50)
  • 5
    • 0001169492 scopus 로고    scopus 로고
    • Guest editorial on information/decision fusion with engineering applications
    • Madan, R.N. and Rao, N.S.V., Guest editorial on information/decision fusion with engineering applications, Journal of Franklin Institute, 336(2), 199, 1999.
    • (1999) Journal of Franklin Institute , vol.336 , Issue.2 , pp. 199
    • Madan, R.N.1    Rao, N.S.V.2
  • 6
    • 0003133883 scopus 로고
    • Probabilistic logics and the synthesis of reliable organisms from unreliable components
    • Shannon, C.E. and McCarthy, J
    • Von Neumann, J., Probabilistic logics and the synthesis of reliable organisms from unreliable components, in Shannon, C.E. and McCarthy, J. (eds), Automata Studies, Princeton University Press, 1956, 43.
    • (1956) Automata Studies, Princeton University Press , pp. 43
    • Von Neumann, J.1
  • 10
    • 0004197578 scopus 로고
    • IEEE Computer Society Press, Los Alamitos, CA
    • Dasarathy, B.V., Decision Fusion, IEEE Computer Society Press, Los Alamitos, CA, 1994.
    • (1994) Decision Fusion
    • Dasarathy, B.V.1
  • 11
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L., Stacked regressions, Machine Learning, 24(1), 49, 1996.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49
    • Breiman, L.1
  • 16
    • 0028424223 scopus 로고
    • Majority and location-based fusers for PAC concept learners. IEEE Transactions on Systems
    • Rao, N.S.V. and Oblow, E.M., Majority and location-based fusers for PAC concept learners. IEEE Transactions on Systems, Man and Cybernetics, 24(5), 713, 1994.
    • (1994) Man and Cybernetics , vol.24 , Issue.5 , pp. 713
    • Rao, N.S.V.1    Oblow, E.M.2
  • 18
    • 37949024862 scopus 로고
    • Probabilistic analysis of learning in artificial neural networks: The PAC model and its variants
    • Royal Holloway, University of London
    • Anthony, M., Probabilistic analysis of learning in artificial neural networks: the PAC model and its variants. NeuroCOLT Technical Report Series NC-TR-94-3, Royal Holloway, University of London, 1994.
    • (1994) Neurocolt Technical Report Series NC-TR-94-3
    • Anthony, M.1
  • 19
    • 84913042410 scopus 로고
    • Lipschitz properties of feedforward neural networks
    • Tang, Z. and Koehler, G.J., Lipschitz properties of feedforward neural networks, Technical report, 1994.
    • (1994) Technical Report
    • Tang, Z.1    Koehler, G.J.2
  • 20
    • 1542753598 scopus 로고
    • Fusion rule estimation in multiple sensor systems using training
    • Modelling and Planning for Sensor Based Intelligent Robot Systems, Bunke, H. et al
    • Rao, N.S.V., Fusion rule estimation in multiple sensor systems using training, in Modelling and Planning for Sensor Based Intelligent Robot Systems, Bunke, H. et al. (eds), World Scientific, 1995, 179.
    • (1995) World Scientific , pp. 179
    • Rao, N.S.V.1
  • 21
    • 0000031859 scopus 로고    scopus 로고
    • Multiple sensor fusion under unknown distributions
    • Rao, N.S.V., Multiple sensor fusion under unknown distributions. Journal of Franklin Institute, 336(2), 285, 1999.
    • (1999) Journal of Franklin Institute , vol.336 , Issue.2 , pp. 285
    • Rao, N.S.V.1
  • 22
    • 0002389879 scopus 로고    scopus 로고
    • Fusion methods in multiple sensor systems using feedforward neural networks
    • Rao, N.S.V., Fusion methods in multiple sensor systems using feedforward neural networks. Intelligent Automation and Soft Computing, 5(1), 21, 1999.
    • (1999) Intelligent Automation and Soft Computing , vol.5 , Issue.1 , pp. 21
    • Rao, N.S.V.1
  • 23
    • 0000518496 scopus 로고
    • Fusion methods for multiple sensor systems with unknown error densities
    • Rao, N.S.V., Fusion methods for multiple sensor systems with unknown error densities, Journal of Franklin Institute, 331B(5), 509, 1994.
    • (1994) Journal of Franklin Institute , vol.331B , Issue.5 , pp. 509
    • Rao, N.S.V.1
  • 24
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • Lugosi, G. and Zeger, K., Nonparametric estimation via empirical risk minimization, IEEE Transactions on Information Theory, 41(3), 677, 1995.
    • (1995) IEEE Transactions on Information Theory , vol.41 , Issue.3 , pp. 677
    • Lugosi, G.1    Zeger, K.2
  • 25
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • Sima, J., Back-propagation is not efficient, Neural Networks, 9(6), 1017, 1996.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 1017
    • Sima, J.1
  • 26
    • 0010421062 scopus 로고    scopus 로고
    • Vector space methods for sensor fusion problems
    • Rao, N.S.V., Vector space methods for sensor fusion problems, Optical Engineering, 37(2), 499, 1998.
    • (1998) Optical Engineering , vol.37 , Issue.2 , pp. 499
    • Rao, N.S.V.1
  • 27
    • 85056053698 scopus 로고
    • Nonlinear Optimization, Oxford University Press
    • Vavasis, S.A., Nonlinear Optimization, Oxford University Press, New York, 1991.
    • (1991) New York
    • Vavasis, S.A.1
  • 28
    • 0001329504 scopus 로고
    • Extrapolative problems in automatic control and method of potential functions
    • Aizerman, M.A. et al., Extrapolative problems in automatic control and method of potential functions, American Mathematical Society Translations, 87, 281, 1970.
    • (1970) American Mathematical Society Translations , vol.87 , pp. 281
    • Aizerman, M.A.1
  • 29
    • 0030190723 scopus 로고    scopus 로고
    • Iyengar. Learning algorithms for feedforward networks based on finite samples
    • Rao, N.S.V. et al., Iyengar. Learning algorithms for feedforward networks based on finite samples. IEEE Transactions on Neural Networks, 7(4), 926, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 926
    • Rao, N.S.V.1
  • 30
    • 0026627415 scopus 로고
    • Kolmogorov’s theorem and multilayer neural networks
    • Kurkova, V., Kolmogorov’s theorem and multilayer neural networks, Neural Networks, 5, 501, 1992.
    • (1992) Neural Networks , vol.5 , pp. 501
    • Kurkova, V.1
  • 31
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function, Mathematics of Contols
    • Cybenko, G., Approximation by superpositions of a sigmoidal function, Mathematics of Contols, Signals, and Systems, 2, 303, 1989.
    • (1989) Signals, and Systems , vol.2 , pp. 303
    • Cybenko, G.1
  • 32
    • 0002179092 scopus 로고
    • Haar system and nonparametric density estimation in several variables
    • Ciesielski, Z., Haar system and nonparametric density estimation in several variables, Probability and Mathematical Statistics, 9, 1, 1988.
    • (1988) Probability and Mathematical Statistics , vol.9 , pp. 1
    • Ciesielski, Z.1
  • 34
    • 38149147981 scopus 로고
    • A simple wavelet approach to nonparametric regression from recursive partitioning schemes
    • Engel, J., A simple wavelet approach to nonparametric regression from recursive partitioning schemes, Journal of Multivariate Analysis, 49, 242, 1994.
    • (1994) Journal of Multivariate Analysis , vol.49 , pp. 242
    • Engel, J.1
  • 36
    • 0030270407 scopus 로고    scopus 로고
    • On PAC learning of functions with smoothness properties using feedforward sigmoidal networks
    • Rao, N.S.V. and Protopopescu, V., On PAC learning of functions with smoothness properties using feedforward sigmoidal networks. Proceedings of the IEEE, 84(10), 1562, 1996.
    • (1996) Proceedings of the IEEE , vol.84 , Issue.10 , pp. 1562
    • Rao, N.S.V.1    Protopopescu, V.2
  • 37
    • 0001436574 scopus 로고    scopus 로고
    • Nadaraya–Watson estimator for sensor fusion
    • Rao, N.S.V., Nadaraya–Watson estimator for sensor fusion, Optical Engineering, 36(3), 642, 1997.
    • (1997) Optical Engineering , vol.36 , Issue.3 , pp. 642
    • Rao, N.S.V.1
  • 39
    • 0001712215 scopus 로고    scopus 로고
    • Distributed decision fusion under unknown distributions
    • Rao, N.S.V. and Iyengar, S.S., Distributed decision fusion under unknown distributions, Optical Engineering, 35(3), 617, 1996.
    • (1996) Optical Engineering , vol.35 , Issue.3 , pp. 617
    • Rao, N.S.V.1    Iyengar, S.S.2
  • 41
    • 0028377666 scopus 로고
    • N-learners problem: Fusion of concepts. IEEE Transactions on Systems
    • Rao, N.S.V. et al., N-learners problem: fusion of concepts. IEEE Transactions on Systems, Man and Cybernetics, 24(2), 319, 1994.
    • (1994) Man and Cybernetics , vol.24 , Issue.2 , pp. 319
    • Rao, N.S.V.1
  • 43
    • 0034216174 scopus 로고    scopus 로고
    • Finite sample performance guarantees of fusers for function estimators
    • Rao, N.S.V., Finite sample performance guarantees of fusers for function estimators, Information Fusion, 1(1), 35, 2000.
    • (2000) Information Fusion , vol.1 , Issue.1 , pp. 35
    • Rao, N.S.V.1
  • 45
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • Hashem, S., Optimal linear combinations of neural networks, Neural Networks, 10(4), 599, 1997.
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599
    • Hashem, S.1
  • 46
    • 0000078841 scopus 로고    scopus 로고
    • Averaging regularized estimators
    • Taniguchi, M. and Tresp, V., Averaging regularized estimators, Neural Computation, 9, 1163, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1163
    • Taniguchi, M.1    Tresp, V.2
  • 49
    • 0032404512 scopus 로고    scopus 로고
    • To fuse or not to fuse: Fuser versus best classifier, in SPIE Conference on Sensor Fusion: Architectures
    • Rao, N.S.V., To fuse or not to fuse: fuser versus best classifier, in SPIE Conference on Sensor Fusion: Architectures, Algorithms, and Applications 2, 34, 1998, 25.
    • (1998) Algorithms, and Applications , vol.2 , Issue.34 , pp. 25
    • Rao, N.S.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.