메뉴 건너뛰기




Volumn , Issue , 1999, Pages 1371-1374

SEMI-SUPERVISED ADAPTATION OF ACOUSTIC MODELS FOR LARGE-VOLUME DICTATION

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC MODEL ADAPTATION; ACOUSTICS MODEL; CONTINUOUS SPEECH; HIGH VOLUMES; LARGE VOCABULARY; LARGE VOLUMES; RECOGNITION ERROR; SEMI-SUPERVISED; SPEECH RECOGNIZER; UNSUPERVISED APPROACHES;

EID: 85053749467     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (6)
  • 1
    • 0027578837 scopus 로고
    • On Speaker-Independent, Speaker-Dependent, and Speaker-Adaptive Speech Recognition
    • April pages
    • Huang X. and Lee K.-F. “On Speaker-Independent, Speaker-Dependent, and Speaker-Adaptive Speech Recognition”, IEEE Transactions on Speech and Audio Processing, Vol. 1, No. 2, April 1993, pages 150-157.
    • (1993) IEEE Transactions on Speech and Audio Processing , vol.1 , Issue.2 , pp. 150-157
    • Huang, X.1    Lee, K.-F.2
  • 2
    • 0026142334 scopus 로고
    • A study in Speaker Adaptation of the Parameters of Continuous Density Hidden Markov Models
    • April pages
    • Lee C.H, Lin C.H. and Juang B.H. “A study in Speaker Adaptation of the Parameters of Continuous Density Hidden Markov Models”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 39, No. 4, April 1991, pages 806-814.
    • (1991) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.39 , Issue.4 , pp. 806-814
    • Lee, C.H1    Lin, C.H.2    Juang, B.H.3
  • 3
    • 0029288633 scopus 로고    scopus 로고
    • Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models
    • Leggetter C.J. and Woodland P.C. “Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models”. Computer Speech and Language, Vol. 9, pages 171-185.
    • Computer Speech and Language , vol.9 , pp. 171-185
    • Leggetter, C.J.1    Woodland, P.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.