메뉴 건너뛰기




Volumn Part F137710, Issue , 2018, Pages

Ares: A framework for quantifying the resilience of deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DESIGN; FAULT TOLERANCE; HARDWARE;

EID: 85053668751     PISSN: 0738100X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3195970.3195997     Document Type: Conference Paper
Times cited : (230)

References (13)
  • 3
    • 85027443168 scopus 로고    scopus 로고
    • Sassifi: An architecture-level fault injection tool for gpu application resilience evaluation
    • S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, J. Emer, "Sassifi: An architecture-level fault injection tool for gpu application resilience evaluation, " ISPASS, 2017.
    • (2017) ISPASS
    • Hari, S.K.S.1    Tsai, T.2    Stephenson, M.3    Keckler, S.W.4    Emer, J.5
  • 4
    • 85016314952 scopus 로고    scopus 로고
    • A 28nm soc with a 1.2ghz 568nj/prediction sparse deep-neural-network engine with 0.1 timing error rate tolerance for iot applications
    • Feb
    • P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, G. Y. Wei, "A 28nm soc with a 1.2ghz 568nj/prediction sparse deep-neural-network engine with 0.1 timing error rate tolerance for iot applications, " ISSCC, Feb 2017.
    • (2017) ISSCC
    • Whatmough, P.N.1    Lee, S.K.2    Lee, H.3    Rama, S.4    Brooks, D.5    Wei, G.Y.6
  • 9
    • 84864858301 scopus 로고    scopus 로고
    • A defect-tolerant accelerator for emerging high-performance applications
    • June
    • O. Temam, "A defect-tolerant accelerator for emerging high-performance applications, " ISCA, June 2012.
    • (2012) ISCA
    • Temam, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.