메뉴 건너뛰기




Volumn 39, Issue 21, 2018, Pages 7172-7188

Mapping wheat response to variations in N, P, Zn, and irrigation using an unmanned aerial vehicle

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; IRRIGATION; REMOTE SENSING; UNMANNED AERIAL VEHICLES (UAV); VEGETATION;

EID: 85053297759     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2018.1515509     Document Type: Article
Times cited : (11)

References (33)
  • 1
    • 84912124929 scopus 로고    scopus 로고
    • Estimating Biomass of Barley Using Crop Surface Models (Csms) Derived from UAV-Based RGB Imaging
    • Bendig, J., A., Bolten, S., Bennertz, J., Broscheit, S., Eichfuss, and G., Bareth. 2014. “Estimating Biomass of Barley Using Crop Surface Models (Csms) Derived from UAV-Based RGB Imaging.” Remote Sensing 6 (11): 10395–10412. doi:10.3390/rs61110395
    • (2014) Remote Sensing , vol.6 , Issue.11 , pp. 10395-10412
    • Bendig, J.1    Bolten, A.2    Bennertz, S.3    Broscheit, J.4    Eichfuss, S.5    Bareth, G.6
  • 3
    • 0016331866 scopus 로고
    • Vegetation Canopy Reflectance
    • Collwell, J. E., 1974. “Vegetation Canopy Reflectance.” Remote Sensing of Environment 3 (3): 175–183. doi:10.1016/0034-4257(74)90003-0
    • (1974) Remote Sensing of Environment , vol.3 , Issue.3 , pp. 175-183
    • Collwell, J.E.1
  • 4
    • 84943609503 scopus 로고    scopus 로고
    • Estimating Chlorophyll with Thermal and Broadband Multispectral High Resolution Imagery from an Unmanned Aerial System Using Relevance Vector Machines for Precision Agriculture
    • Elarab, M., A. M., Ticlavilca, A. F., Torres-Rua, I., Maslova, and M., Mac. 2015. “Estimating Chlorophyll with Thermal and Broadband Multispectral High Resolution Imagery from an Unmanned Aerial System Using Relevance Vector Machines for Precision Agriculture.” International Journal of Applied Earth Observation and Geoinformation 43: 32–42. doi:10.1016/j.jag.2015.03.017
    • (2015) International Journal of Applied Earth Observation and Geoinformation , vol.43 , pp. 32-42
    • Elarab, M.1    Ticlavilca, A.M.2    Torres-Rua, A.F.3    Maslova, I.4    Mac, M.5
  • 5
    • 85042362161 scopus 로고    scopus 로고
    • Low-Cost Visible and near-Infrared Camera on an Unmanned Aerial Vehicle for Assessing the Herbage Biomass and Leaf Area Index in an Italian Ryegrass Field
    • Fan, X., K., Kawamura, T. D., Xuan, N., Yuba, J., Lim, R., Yoshitoshi, T. N., Minh, Y., Kurokawa, and T., Obitsu. 2017. “Low-Cost Visible and near-Infrared Camera on an Unmanned Aerial Vehicle for Assessing the Herbage Biomass and Leaf Area Index in an Italian Ryegrass Field.” Grassland Science. doi:10.1111/grs.12184
    • (2017) Grassland Science
    • Fan, X.1    Kawamura, K.2    Xuan, T.D.3    Yuba, N.4    Lim, J.5    Yoshitoshi, R.6    Minh, T.N.7    Kurokawa, Y.8    Obitsu, T.9
  • 6
    • 84912137635 scopus 로고    scopus 로고
    • Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System
    • Geipel, J., J., Link, and W., Claupein. 2014. “Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System.” Remote Sensing 6 (11): 10335–10355. doi:10.3390/rs61110335
    • (2014) Remote Sensing , vol.6 , Issue.11 , pp. 10335-10355
    • Geipel, J.1    Link, J.2    Claupein, W.3
  • 7
    • 0030453414 scopus 로고    scopus 로고
    • Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS
    • Gitelson, A. A., Y. J., Kaufman, and M. N., Merzlyak. 1996. “Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.” Remote Sensing of Environment 58 (3): 289–298. doi:10.1016/S0034-4257(96)00072-7
    • (1996) Remote Sensing of Environment , vol.58 , Issue.3 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 8
    • 85035787290 scopus 로고    scopus 로고
    • Comparative Performance of Ground Vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization
    • Gracia-Romero, A., S. C., Kefauver, O., Vergara-Díaz, M. A., Zaman-Allah, B. M., Prasanna, J. E., Cairns, and J. L., Araus. 2017. “Comparative Performance of Ground Vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization.” Frontiers in Plant Science 8 (Nov): 1–13. doi:10.3389/fpls.2017.02004
    • (2017) Frontiers in Plant Science , vol.8 , Issue.Nov , pp. 1-13
    • Gracia-Romero, A.1    Kefauver, S.C.2    Vergara-Díaz, O.3    Zaman-Allah, M.A.4    Prasanna, B.M.5    Cairns, J.E.6    Araus, J.L.7
  • 9
    • 84887537551 scopus 로고    scopus 로고
    • Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
    • Honkavaara, E., H., Saari, J., Kaivosoja, T., Hakala, P., Litkey, J., Mäkynen, and L., Pesonen. 2013. “Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture.” Remote Sensing 5 (10): 5006–5039. doi:10.3390/rs5105006
    • (2013) Remote Sensing , vol.5 , Issue.10 , pp. 5006-5039
    • Honkavaara, E.1    Saari, H.2    Kaivosoja, J.3    Hakala, T.4    Litkey, P.5    Mäkynen, J.6    Pesonen, L.7
  • 10
    • 0024165401 scopus 로고
    • A Soil-Adjusted Vegetation Index (SAVI)
    • Huete, A. R., 1988. “A Soil-Adjusted Vegetation Index (SAVI).” Remote Sensing of Environment 25 (3): 295–309. doi:10.1016/0034-4257(88)90106-X
    • (1988) Remote Sensing of Environment , vol.25 , Issue.3 , pp. 295-309
    • Huete, A.R.1
  • 12
    • 84912057005 scopus 로고    scopus 로고
    • Monitoring of Crop Biomass Using True Colour Aerial Photographs Taken from a Remote Controlled Hexacopter
    • Elsevier Ltd, and
    • Jannoura, R., K., Brinkmann, D., Uteau, C., Bruns, and R. G., Joergensen. 2015. “Monitoring of Crop Biomass Using True Colour Aerial Photographs Taken from a Remote Controlled Hexacopter.” Biosystems Engineering 129: 341–351. Elsevier Ltd. doi:10.1016/j.biosystemseng.2014.11.007
    • (2015) Biosystems Engineering , vol.129 , pp. 341-351
    • Jannoura, R.1    Brinkmann, K.2    Uteau, D.3    Bruns, C.4    Joergensen, R.G.5
  • 13
    • 84975229779 scopus 로고    scopus 로고
    • UAV Remote Sensing Image Mosaic and Its Application in Agriculture
    • Jia, Y., S., Zhongbin, W., Shen, J., Yuan, and X., Zhenan. 2016. “UAV Remote Sensing Image Mosaic and Its Application in Agriculture.” International Journal of Smart Home 10 (5): 159–170. doi:10.14257/ijsh.2016.10.5.15
    • (2016) International Journal of Smart Home , vol.10 , Issue.5 , pp. 159-170
    • Jia, Y.1    Zhongbin, S.2    Shen, W.3    Yuan, J.4    Zhenan, X.5
  • 14
    • 85035111844 scopus 로고    scopus 로고
    • Application of Satellite, Unmanned Aircraft System, and Ground-Based Sensor Data for Precision Agriculture: A Review
    • American Society of Agricultural and Biological Engineers, Spokane, WA, July 16–19
    • Joshua, D. R., T. R., Gary, and J. C., John. 2017. “Application of Satellite, Unmanned Aircraft System, and Ground-Based Sensor Data for Precision Agriculture: A Review.” ASABE Annual International Meeting, Vol. 1. American Society of Agricultural and Biological Engineers, Spokane, WA, July 16–19
    • (2017) ASABE Annual International Meeting , vol.1
    • Joshua, D.R.1    Gary, T.R.2    John, J.C.3
  • 17
    • 44649115314 scopus 로고    scopus 로고
    • Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots
    • Lelong, C. C. D., P., Burger, G., Jubelin, B., Roux, and F., Baret. 2008. “Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots.” Sensors 8 (5): 3557–3585. doi:10.3390/s8053557
    • (2008) Sensors , vol.8 , Issue.5 , pp. 3557-3585
    • Lelong, C.C.D.1    Burger, P.2    Jubelin, G.3    Roux, B.4    Baret, F.5
  • 18
    • 84939247593 scopus 로고    scopus 로고
    • Early Season Weed Mapping in Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps against Weed Thresholds
    • López-Granados, F., J., Torres-Sànchez, A., Serrano-Pérez, A. I., de Castro, F. J., Mesas-Carrascosa, and J. M., Peña. 2016. “Early Season Weed Mapping in Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps against Weed Thresholds.” Precision Agriculture 17 (2): 183–199. doi:10.1007/s11119-015-9415-8
    • (2016) Precision Agriculture , vol.17 , Issue.2 , pp. 183-199
    • López-Granados, F.1    Torres-Sànchez, J.2    Serrano-Pérez, A.3    de Castro, A.I.4    Mesas-Carrascosa, F.J.5    Peña, J.M.6
  • 19
    • 85047214482 scopus 로고    scopus 로고
    • Detection of Homogeneous Wheat Areas Using Multi-Temporal UAS Images and Ground Truth Data Analyzed by Cluster Analysis
    • Taylor & Francis, and
    • Marino, S., and A., Alvino. 2018. “Detection of Homogeneous Wheat Areas Using Multi-Temporal UAS Images and Ground Truth Data Analyzed by Cluster Analysis.” European Journal of Remote Sensing 51 (1): 266–275. Taylor & Francis. doi:10.1080/22797254.2017.1422280
    • (2018) European Journal of Remote Sensing , vol.51 , Issue.1 , pp. 266-275
    • Marino, S.1    Alvino, A.2
  • 20
    • 84880358324 scopus 로고    scopus 로고
    • Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud
    • IAgrE, and
    • Mathews, A. J., and J. L. R., Jensen. 2013. “Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud.” Remote Sensing 5 (5): 2164–2183. doi:10.3390/rs5052164.IAgrE
    • (2013) Remote Sensing , vol.5 , Issue.5 , pp. 2164-2183
    • Mathews, A.J.1    Jensen, J.L.R.2
  • 21
    • 85028331428 scopus 로고    scopus 로고
    • Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV)
    • Park, S., D., Ryu, S., Fuentes, H., Chung, E., Hernández-Montes, and M., O’Connell. 2017. “Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV).” Remote Sensing 9 (8): 828. doi:10.3390/rs9080828
    • (2017) Remote Sensing , vol.9 , Issue.8 , pp. 828
    • Park, S.1    Ryu, D.2    Fuentes, S.3    Chung, H.4    Hernández-Montes, E.5    O’Connell, M.6
  • 23
    • 85041535328 scopus 로고    scopus 로고
    • Remote Sensing Using Canopy and Leaf Reflectance for Estimating Nitrogen Status in Red-Blush Pears
    • Perry, E. M., I., Goodwin, and D., Cornwall. 2018. “Remote Sensing Using Canopy and Leaf Reflectance for Estimating Nitrogen Status in Red-Blush Pears.” HortScience 53 (1): 78–83. doi:10.21273/HORTSCI12391-17
    • (2018) HortScience , vol.53 , Issue.1 , pp. 78-83
    • Perry, E.M.1    Goodwin, I.2    Cornwall, D.3
  • 24
    • 85032742762 scopus 로고    scopus 로고
    • Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV)
    • Poblete, T., S., Ortega-Farías, M., Moreno, and M., Bardeen. 2017. “Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV).” Sensors 17 (11): 2488. doi:10.3390/s17112488
    • (2017) Sensors , vol.17 , Issue.11 , pp. 2488
    • Poblete, T.1    Ortega-Farías, S.2    Moreno, M.3    Bardeen, M.4
  • 25
    • 85040654514 scopus 로고    scopus 로고
    • Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop Using Multi-Angle Spectral Data–Potential of Unmanned Aerial Vehicle Imagery
    • October 2017), Elsevier, and
    • Roosjen, P. P. J., B., Brede, J. M., Suomalainen, H. M., Bartholomeus, L., Kooistra, and J. G. P. W., Clevers. 2018. “Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop Using Multi-Angle Spectral Data–Potential of Unmanned Aerial Vehicle Imagery.” International Journal of Applied Earth Observation and Geoinformation 66 (October 2017): 14–26. Elsevier. doi:10.1016/j.jag.2017.10.012
    • (2018) International Journal of Applied Earth Observation and Geoinformation , vol.66 , pp. 14-26
    • Roosjen, P.P.J.1    Brede, B.2    Suomalainen, J.M.3    Bartholomeus, H.M.4    Kooistra, L.5    Clevers, J.G.P.W.6
  • 26
    • 85011292282 scopus 로고    scopus 로고
    • Predicting Cover Crop Biomass by Lightweight UAS-Based RGB and NIR Photography: An Applied Photogrammetric Approach
    • Roth, L., and B., Streit. 2018. “Predicting Cover Crop Biomass by Lightweight UAS-Based RGB and NIR Photography: An Applied Photogrammetric Approach.” Precision Agriculture 19 (1): 93–114. doi:10.1007/s11119-017-9501-1
    • (2018) Precision Agriculture , vol.19 , Issue.1 , pp. 93-114
    • Roth, L.1    Streit, B.2
  • 27
    • 84944074770 scopus 로고    scopus 로고
    • Field-Based Crop Phenotyping: Multispectral Aerial Imaging for Evaluation of Winter Wheat Emergence and Spring Stand
    • Sankaran, S., L. R., Khot, and A. H., Carter. 2015. “Field-Based Crop Phenotyping: Multispectral Aerial Imaging for Evaluation of Winter Wheat Emergence and Spring Stand.” Computers and Electronics in Agriculture 118: 372–379. doi:10.1016/j.compag.2015.09.001
    • (2015) Computers and Electronics in Agriculture , vol.118 , pp. 372-379
    • Sankaran, S.1    Khot, L.R.2    Carter, A.H.3
  • 28
    • 85056972049 scopus 로고    scopus 로고
    • The Future of Drones in the Modern Farming Industry
    • Stein, N., 2018. “The Future of Drones in the Modern Farming Industry.” GEOmedia 21: 5
    • (2018) GEOmedia , vol.21 , Issue.5
    • Stein, N.1
  • 29
    • 77949821115 scopus 로고    scopus 로고
    • Adoption of an Unmanned Helicopter for Low-Altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop
    • Swain, K. C., S. J., Thomson, and H. P. W., Jayasuriya. 2010. “Adoption of an Unmanned Helicopter for Low-Altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop.” Transactions of the ASABE 53 (1): 21–27. doi:10.13031/2013.29493
    • (2010) Transactions of the ASABE , vol.53 , Issue.1 , pp. 21-27
    • Swain, K.C.1    Thomson, S.J.2    Jayasuriya, H.P.W.3
  • 30
    • 84923067509 scopus 로고    scopus 로고
    • Multi-Temporal Imaging Using an Unmanned Aerial Vehicle for Monitoring a Sunflower Crop
    • Vega, F., F., Agüera, C., Ramírez, M. P., Saiz, and F. O., Rosùa. 2015. “Multi-Temporal Imaging Using an Unmanned Aerial Vehicle for Monitoring a Sunflower Crop.” Biosystems Engineering 132: 19–27. doi:10.1016/j.biosystemseng.2015.01.008
    • (2015) Biosystems Engineering , vol.132 , pp. 19-27
    • Vega, F.1    Agüera, F.2    Ramírez, C.3    Saiz, M.P.4    Rosùa, F.O.5
  • 31
    • 85038247198 scopus 로고    scopus 로고
    • Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery
    • Yao, X., N., Wang, Y., Liu, T., Cheng, Y., Tian, Q., Chen, and Y., Zhu. 2017. “Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery.” Remote Sensing 9: (12). doi:10.3390/rs9121304
    • (2017) Remote Sensing , vol.9 , Issue.12
    • Yao, X.1    Wang, N.2    Liu, Y.3    Cheng, T.4    Tian, Y.5    Chen, Q.6    Zhu, Y.7
  • 32
    • 84932599006 scopus 로고    scopus 로고
    • Unmanned Aerial Platform-Based Multi-Spectral Imaging for Field Phenotyping of Maize
    • BioMed Central
    • Zaman-Allah, M., O., Vergara, J. L., Araus, A., Tarekegne, C., Magorokosho, P. J., Zarco-Tejada, A., Hornero, et al. 2015. “Unmanned Aerial Platform-Based Multi-Spectral Imaging for Field Phenotyping of Maize.” Plant Methods 11 (1): 35. BioMed Central. doi: 10.1186/s13007-015-0078-2
    • (2015) Plant Methods , vol.11 , Issue.1 , pp. 35
    • Zaman-Allah, M.1    Vergara, O.2    Araus, J.L.3    Tarekegne, A.4    Magorokosho, C.5    Zarco-Tejada, P.J.6    Hornero, A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.