메뉴 건너뛰기




Volumn , Issue , 2017, Pages 423-440

Application of data-driven models in drought forecasting

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85053173581     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781315404219     Document Type: Chapter
Times cited : (11)

References (15)
  • 1
    • 77952250264 scopus 로고    scopus 로고
    • Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse
    • Abedi-Koupai, J., Amiri, M. J., and Eslamian, S. S. 2009. Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse, Australian Journal of Basic and Applied Sciences, 3(3): 2528-2535.
    • (2009) Australian Journal of Basic and Applied Sciences , vol.3 , Issue.3 , pp. 2528-2535
    • Abedi-Koupai, J.1    Amiri, M.J.2    Eslamian, S.S.3
  • 4
    • 77954147549 scopus 로고    scopus 로고
    • Estimation of daily reference evapotranspiration using support vector machines and artificial neural networks in greenhouse
    • Eslamian, S. S., Abedi-Koupai, J., Amiri, M. J., and Gohari, S. A. 2009. Estimation of daily reference evapotranspiration using support vector machines and artificial neural networks in greenhouse, Research Journal of Environmental Sciences, 3(4): 439-447.
    • (2009) Research Journal of Environmental Sciences , vol.3 , Issue.4 , pp. 439-447
    • Eslamian, S.S.1    Abedi-Koupai, J.2    Amiri, M.J.3    Gohari, S.A.4
  • 5
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornick, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators, Neural Networks, 2(5): 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 0004235910 scopus 로고    scopus 로고
    • 2nd edn., Palgrave, New York
    • Picton, P. 2000. Neural Networks, 2nd edn., Palgrave, New York.
    • (2000) Neural Networks
    • Picton, P.1
  • 9
  • 10
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang, Z. and Fishwick, P. A. 1993. Feedforward neural nets as models for time series forecasting, ORSA Journal of Computing, 5(4): 374-385.
    • (1993) ORSA Journal of Computing , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 11
    • 34247573991 scopus 로고    scopus 로고
    • Regional drought assessment based on the reconnaissance drought index (RDI)
    • Tsakiris, G., Pangalou, D., and Vangelis, H. 2007. Regional drought assessment based on the reconnaissance drought index (RDI), Water Resources Management, 21: 821-833.
    • (2007) Water Resources Management , vol.21 , pp. 821-833
    • Tsakiris, G.1    Pangalou, D.2    Vangelis, H.3
  • 14
    • 85053171104 scopus 로고    scopus 로고
    • Multiclass support vector machines, Technical report, CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, Egham, U.K
    • Weston, J. and Watkins, C. 1998. Multiclass support vector machines, Technical report, CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, Egham, U.K.
    • (1998)
    • Weston, J.1    Watkins, C.2
  • 15
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural networks
    • Wong, F. S. 1991. Time series forecasting using backpropagation neural networks, Neurocomputing, 2: 147-159.
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.