메뉴 건너뛰기




Volumn 18, Issue 9, 2018, Pages

Real-time task assignment approach leveraging reinforcement learning with evolution strategies for long-term latency minimization in fog computing

Author keywords

Evolution strategies; Fog computing; Long term latency minimization; Real time task assignment; Reinforcement learning

Indexed keywords

FOG; INTERNET OF THINGS; LEARNING ALGORITHMS; REINFORCEMENT LEARNING;

EID: 85052605784     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18092830     Document Type: Article
Times cited : (40)

References (40)
  • 4
    • 85007400492 scopus 로고    scopus 로고
    • Enabling low-latency applications in fog-radio access networks
    • Shih, Y.Y.; Chung, W.H.; Pang, A.C.; Chiu, T.C.; Wei, H.Y. Enabling low-latency applications in fog-radio access networks. IEEE Netw. 2017, 31, 52–58. [CrossRef]
    • (2017) IEEE Netw , vol.31 , pp. 52-58
    • Shih, Y.Y.1    Chung, W.H.2    Pang, A.C.3    Chiu, T.C.4    Wei, H.Y.5
  • 5
    • 85041799869 scopus 로고    scopus 로고
    • Radio Resource Allocation for Achieving Ultra-Low Latency in Fog Radio Access Networks
    • Rahman, G.S.; Peng, M.; Zhang, K.; Chen, S. Radio Resource Allocation for Achieving Ultra-Low Latency in Fog Radio Access Networks. IEEE Access 2018, 6, 17442–17454. [CrossRef]
    • (2018) IEEE Access , vol.6 , pp. 17442-17454
    • Rahman, G.S.1    Peng, M.2    Zhang, K.3    Chen, S.4
  • 7
    • 84979609826 scopus 로고    scopus 로고
    • Fog-computing-based radio access networks: Issues and challenges
    • Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 2016, 30, 46–53. [CrossRef]
    • (2016) IEEE Netw , vol.30 , pp. 46-53
    • Peng, M.1    Yan, S.2    Zhang, K.3    Wang, C.4
  • 10
    • 85038403738 scopus 로고    scopus 로고
    • Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach
    • He, Y.; Yu, F.R.; Zhao, N.; Leung, V.C.; Yin, H. Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun. Mag. 2017, 55, 31–37. [CrossRef]
    • (2017) IEEE Commun. Mag. , vol.55 , pp. 31-37
    • He, Y.1    Yu, F.R.2    Zhao, N.3    Leung, V.C.4    Yin, H.5
  • 11
    • 85031782882 scopus 로고    scopus 로고
    • Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep Reinforcement Learning Approach
    • He, Y.; Zhao, N.; Yin, H. Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2018, 67, 44–55. [CrossRef]
    • (2018) IEEE Trans. Veh. Technol. , vol.67 , pp. 44-55
    • He, Y.1    Zhao, N.2    Yin, H.3
  • 15
    • 67049101374 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Nasrabadi, N.M. Pattern recognition and machine learning. J. Electron. Imaging 2007, 16, 049901.
    • (2007) J. Electron. Imaging , vol.16
    • Nasrabadi, N.M.1
  • 16
    • 85082363829 scopus 로고    scopus 로고
    • Fog computing: A taxonomy, survey and future directions
    • Springer: Berlin, Heidelberg
    • Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer: Berlin, Heidelberg: 2018; pp. 103–130.
    • (2018) Internet of Everything , pp. 103-130
    • Mahmud, R.1    Kotagiri, R.2    Buyya, R.3
  • 17
    • 85043456909 scopus 로고    scopus 로고
    • Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges
    • Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1826–1857. [CrossRef]
    • (2018) IEEE Commun. Surv. Tutor. , vol.20 , pp. 1826-1857
    • Mukherjee, M.1    Shu, L.2    Wang, D.3
  • 18
    • 85028360031 scopus 로고    scopus 로고
    • Mobile edge computing: A survey on architecture and computation offloading
    • Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]
    • (2017) IEEE Commun. Surv. Tutor. , vol.19 , pp. 1628-1656
    • Mach, P.1    Becvar, Z.2
  • 19
    • 85040821470 scopus 로고    scopus 로고
    • Computing, Caching, and Communication at the Edge: The Cornerstone for Building a Versatile 5G Ecosystem
    • Markakis, E.K.; Karras, K.; Sideris, A.; Alexiou, G.; Pallis, E. Computing, Caching, and Communication at the Edge: The Cornerstone for Building a Versatile 5G Ecosystem. IEEE Commun. Mag. 2017, 55, 152–157. [CrossRef]
    • (2017) IEEE Commun. Mag. , vol.55 , pp. 152-157
    • Markakis, E.K.1    Karras, K.2    Sideris, A.3    Alexiou, G.4    Pallis, E.5
  • 20
    • 85042103831 scopus 로고    scopus 로고
    • 5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model
    • Kim, S. 5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model. ETRI J. 2018, 40, 61–71. [CrossRef]
    • (2018) ETRI J , vol.40 , pp. 61-71
    • Kim, S.1
  • 21
    • 85045238221 scopus 로고    scopus 로고
    • QoS-aware orchestration of network intensive software utilities within software defined data centres
    • Paščinski, U.; Trnkoczy, J.; Stankovski, V.; Cigale, M.; Gec, S. QoS-aware orchestration of network intensive software utilities within software defined data centres. J. Grid Comput. 2018, 16, 85–112. [CrossRef]
    • (2018) J. Grid Comput. , vol.16 , pp. 85-112
    • Paščinski, U.1    Trnkoczy, J.2    Stankovski, V.3    Cigale, M.4    Gec, S.5
  • 24
    • 85045770009 scopus 로고    scopus 로고
    • Pattern-Identified Online Task Scheduling in Multitier Edge Computing for Industrial IoT Services. Mob. Inf
    • Dao, N.N.; Vu, D.N.; Lee, Y.; Cho, S.; Cho, C.; Kim, H. Pattern-Identified Online Task Scheduling in Multitier Edge Computing for Industrial IoT Services. Mob. Inf. Syst. 2018, 2018, 2101206. [CrossRef]
    • (2018) Syst
    • Dao, N.N.1    Vu, D.N.2    Lee, Y.3    Cho, S.4    Cho, C.5    Kim, H.6
  • 26
    • 85029601469 scopus 로고    scopus 로고
    • Adaptive resource balancing for serviceability maximization in fog radio access networks
    • Dao, N.N.; Lee, J.; Vu, D.N.; Paek, J.; Kim, J.; Cho, S.; Chung, K.S.; Keum, C. Adaptive resource balancing for serviceability maximization in fog radio access networks. IEEE Access 2017, 5, 14548–14559. [CrossRef]
    • (2017) IEEE Access , vol.5 , pp. 14548-14559
    • Dao, N.N.1    Lee, J.2    Vu, D.N.3    Paek, J.4    Kim, J.5    Cho, S.6    Chung, K.S.7    Keum, C.8
  • 29
    • 85007210890 scopus 로고    scopus 로고
    • Deep Reinforcement Learning with Double Q-Learning
    • Phoenix, AZ, USA, 12–17 February 2016
    • Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the AAAI, Phoenix, AZ, USA, 12–17 February 2016; Volume 16, pp. 2094–2100.
    • Proceedings of the AAAI , vol.16 , pp. 2094-2100
    • van Hasselt, H.1    Guez, A.2    Silver, D.3
  • 31
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [CrossRef]
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 33
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
    • (2015) Nature , vol.521 , pp. 436
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 37
    • 84877711648 scopus 로고    scopus 로고
    • Abd-El-Malek, M.; Wilkes, J. Omega: Flexible, scalable schedulers for large compute clusters
    • Prague, Czech Republic, 14–17 April 2013
    • Schwarzkopf, M.; Konwinski, A.; Abd-El-Malek, M.; Wilkes, J. Omega: Flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems, Prague, Czech Republic, 14–17 April 2013; pp. 351–364.
    • Proceedings of the 8Th ACM European Conference on Computer Systems , pp. 351-364
    • Schwarzkopf, M.1    Konwinski, A.2
  • 39
    • 84923248887 scopus 로고    scopus 로고
    • Containers and cloud: From lxc to docker to kubernetes
    • Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
    • (2014) IEEE Cloud Comput , vol.1 , pp. 81-84
    • Bernstein, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.