메뉴 건너뛰기




Volumn 10, Issue 8, 2018, Pages

Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian Seas

Author keywords

Aegean; Global scale; Google Earth Engine; Habitat mapping; Image composition; Ionian; Machine learning; Seagrass; Sentinel 2; Support vector machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLIMATE CHANGE; ENGINES; IMAGE PROCESSING; LEARNING SYSTEMS; MAPPING; PLANTS (BOTANY); SUPPORT VECTOR MACHINES; VECTOR SPACES;

EID: 85051668046     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10081227     Document Type: Article
Times cited : (132)

References (43)
  • 4
    • 84991253070 scopus 로고    scopus 로고
    • Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions
    • Nordlund, M.L.; Koch, E.W.; Barbier, E.B.; Creed, J.C. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions. PLoS ONE 2016, 11, e0163091
    • (2016) PLoS ONE , vol.11
    • Nordlund, M.L.1    Koch, E.W.2    Barbier, E.B.3    Creed, J.C.4
  • 5
    • 85018863139 scopus 로고    scopus 로고
    • Carbon storage in the seagrass meadows of Gazi Bay, Kenya
    • Githaiga, M.N.; Kairo, J.G.; Gilpin, L.; Huxham, M. Carbon storage in the seagrass meadows of Gazi Bay, Kenya. PLoS ONE 2017, 12, e0177001
    • (2017) PLoS ONE , vol.12
    • Githaiga, M.N.1    Kairo, J.G.2    Gilpin, L.3    Huxham, M.4
  • 7
    • 85051624192 scopus 로고    scopus 로고
    • 21 October 2015 (accessed on 3 August 2018)
    • UN General Assembly, Transforming OurWorld: The 2030 Agenda for Sustainable Development. 21 October 2015 Available online: http://www.refworld.org/docid/57b6e3e44.html (accessed on 3 August 2018)
  • 10
    • 84920983076 scopus 로고    scopus 로고
    • The application of remote sensing to seagrass ecosystems: An overview and future research prospects
    • Hossain, M.S.; Bujang, J.S.; Zakaria, M.H.; Hashim, M. The application of remote sensing to seagrass ecosystems: An overview and future research prospects. Int. J. Remote Sens. 2015, 36, 61-114
    • (2015) Int. J. Remote Sens , vol.36 , pp. 61-114
    • Hossain, M.S.1    Bujang, J.S.2    Zakaria, M.H.3    Hashim, M.4
  • 12
    • 45649083782 scopus 로고    scopus 로고
    • Regional-scale seagrass habitat mapping in the wider Caribbean region using Landsat sensors: Applications to conservation and ecology
    • Wabnitz, C.; Andréfouët, S.; Torres-Pulliza, D.; Müller-Karger, F.; Kramer, P. Regional-scale seagrass habitat mapping in the wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sens. Environ. 2008, 112, 3455-3467
    • (2008) Remote Sens. Environ , vol.112 , pp. 3455-3467
    • Wabnitz, C.1    Andréfouët, S.2    Torres-Pulliza, D.3    Müller-Karger, F.4    Kramer, P.5
  • 17
    • 85010648872 scopus 로고    scopus 로고
    • High-resolution mapping of global surface water and its long-term changes
    • Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418-422
    • (2016) Nature , vol.540 , pp. 418-422
    • Pekel, J.F.1    Cottam, A.2    Gorelick, N.3    Belward, A.S.4
  • 18
    • 85048961719 scopus 로고    scopus 로고
    • Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2
    • Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859
    • (2018) Remote Sens , vol.10 , pp. 859
    • Traganos, D.1    Poursanidis, D.2    Aggarwal, B.3    Chrysoulakis, N.4    Reinartz, P.5
  • 22
    • 85051655350 scopus 로고    scopus 로고
    • (accessed on 3 August 2018)
    • HNHS. Greek Coastline at Scale 1:90, 000. 2018. Available online: https://www.hnhs.gr/en/?option=com_ opencart&Itemid=268&route=product/product&path=86&producp_id=271 (accessed on 3 August 2018)
    • (2018) Greek Coastline at Scale 1:90, 000
  • 24
    • 0027449721 scopus 로고
    • Remote sensing of submerged vegetation canopies for biomass estimation
    • Armstrong, R.A. Remote sensing of submerged vegetation canopies for biomass estimation. Int. J. Remote Sens. 1993, 14, 621-627
    • (1993) Int. J. Remote Sens , vol.14 , pp. 621-627
    • Armstrong, R.A.1
  • 25
    • 22144434100 scopus 로고    scopus 로고
    • Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos
    • Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107-2112
    • (2005) Int. J. Remote Sens , vol.26 , pp. 2107-2112
    • Hedley, J.D.1    Harborne, A.R.2    Mumby, P.J.3
  • 26
    • 0017929001 scopus 로고
    • Passive remote sensing techniques for mapping water depth and bottom features
    • Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379-383
    • (1978) Appl. Opt , vol.17 , pp. 379-383
    • Lyzenga, D.R.1
  • 27
    • 0019727998 scopus 로고
    • Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data
    • Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sens. 1981, 2, 71-82
    • (1981) Int. J. Remote Sens , vol.2 , pp. 71-82
    • Lyzenga, D.R.1
  • 30
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 31
    • 84939415665 scopus 로고    scopus 로고
    • Applying data fusion techniques for benthic habitat mapping and monitoring a coral reef ecosystem
    • Zhang, C. Applying data fusion techniques for benthic habitat mapping and monitoring a coral reef ecosystem. ISPRS J. Photogramm. Remote Sens. 2015, 104, 213-223
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.104 , pp. 213-223
    • Zhang, C.1
  • 34
    • 85048960240 scopus 로고    scopus 로고
    • Mapping coastal marine habitats and delineating the deep limits of the Neptune's seagrass meadows using VHR earth observation data
    • Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N. Mapping coastal marine habitats and delineating the deep limits of the Neptune's seagrass meadows using VHR earth observation data. Int. J. Remote Sens. 2018
    • (2018) Int. J. Remote Sens
    • Poursanidis, D.1    Topouzelis, K.2    Chrysoulakis, N.3
  • 35
    • 85051653057 scopus 로고    scopus 로고
    • (accessed on 3 August 2018) (Version 5.0). Fourth Update to the Data Layer Used in Green and Short (2003)
    • The UN Environment World Conservation Monitoring Centre (UNEP-WCMC). Global Distribution of Seagrasses (Version 5.0). Fourth Update to the Data Layer Used in Green and Short (2003). 2017. Available online: http://data.unep-wcmc.org/datasets/7 (accessed on 3 August 2018)
    • (2017) Global Distribution of Seagrasses
  • 36
    • 85051674597 scopus 로고    scopus 로고
    • (accessed on 3 August 2018)
    • Partnership to Develop First-Ever Global Map and Dynamic Map of Coral Reefs. 2018. Available online: https://carnegiescience.edu/node/2354 (accessed on 3 August 2018)
    • (2018)
  • 37
    • 85018906391 scopus 로고    scopus 로고
    • Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels
    • Brodu, N. Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610-4617
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 4610-4617
    • Brodu, N.1
  • 39
    • 85051679901 scopus 로고    scopus 로고
    • (accessed on 3 August 2018)
    • Wilson, R. Py6S-A Python Interface to 6S. 2012. Available online: https://py6s.readthedocs.io/en/latest/ (accessed on 3 August 2018)
    • (2012) Py6S-A Python Interface to 6S
    • Wilson, R.1
  • 40
    • 0000561508 scopus 로고    scopus 로고
    • Hyperspectral remote sensing for shallow waters: 1 A semianalytical model
    • Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 1. A semianalytical model. Appl. Opt. 1998, 37, 6329-6338
    • (1998) Appl. Opt , vol.37 , pp. 6329-6338
    • Lee, Z.1    Carder, K.L.2    Mobley, C.D.3    Steward, R.G.4    Patch, J.S.5
  • 41
    • 0032615174 scopus 로고    scopus 로고
    • Hyperspectral remote sensing for shallow waters: 2 Deriving bottom depths and water properties by optimization
    • Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831-3843
    • (1999) Appl. Opt , vol.38 , pp. 3831-3843
    • Lee, Z.1    Carder, K.L.2    Mobley, C.D.3    Steward, R.G.4    Patch, J.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.