메뉴 건너뛰기




Volumn 11, Issue 1, 2018, Pages

Prediction of dissolved gas concentrations in transformer oil based on the KPCA-FFOA-GRNN model

Author keywords

Dissolved gas in oil; Fruit fly optimization algorithm; Generalized regression neural network; Kernel principal component analysis

Indexed keywords

DISSOLUTION; FAULT DETECTION; FORECASTING; FRUITS; GASES; NEURAL NETWORKS; OPTIMIZATION; PRINCIPAL COMPONENT ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85051205634     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en11010225     Document Type: Article
Times cited : (36)

References (23)
  • 1
    • 84898445845 scopus 로고    scopus 로고
    • A new fuzzy logic approach for consistent interpretation of dissolved gas-in-oil analysis
    • [CrossRef]
    • Abu-Siada, A.; Hmood, S.; Islam, S. A new fuzzy logic approach for consistent interpretation of dissolved gas-in-oil analysis. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2343-2349. [CrossRef]
    • (2013) IEEE Trans. Dielectr. Electr. Insul. , vol.20 , pp. 2343-2349
    • Abu-Siada, A.1    Hmood, S.2    Islam, S.3
  • 2
    • 84934283684 scopus 로고    scopus 로고
    • Diagnosis of solid insulation deterioration for power transformers with dissolved gas analysis-based time series correlation
    • [CrossRef]
    • Wang, X.; Li, Q.; Yang, R.; Li, C.; Zhang, Y. Diagnosis of solid insulation deterioration for power transformers with dissolved gas analysis-based time series correlation. IET Sci. Meas. Technol. 2015, 9, 393-399. [CrossRef]
    • (2015) IET Sci. Meas. Technol. , vol.9 , pp. 393-399
    • Wang, X.1    Li, Q.2    Yang, R.3    Li, C.4    Zhang, Y.5
  • 3
    • 84947902062 scopus 로고    scopus 로고
    • Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases
    • [CrossRef]
    • Mansour, D. -E. A. Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2507-2512. [CrossRef]
    • (2015) IEEE Trans. Dielectr. Electr. Insul. , vol.22 , pp. 2507-2512
    • Mansour, E.D.A.1
  • 4
    • 84973480958 scopus 로고    scopus 로고
    • Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine
    • [CrossRef]
    • Li, J.; Zhang, Q.; Wang, K.; Wang, J.; Zhou, T.; Zhang, Y. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1198-1206. [CrossRef]
    • (2016) IEEE Trans. Dielectr. Electr. Insul. , vol.23 , pp. 1198-1206
    • Li, J.1    Zhang, Q.2    Wang, K.3    Wang, J.4    Zhou, T.5    Zhang, Y.6
  • 10
    • 4644251151 scopus 로고    scopus 로고
    • Grey-extension method for incipient fault forecasting of oil-immersed power transformer
    • [CrossRef]
    • Wang, M. H. Grey-extension method for incipient fault forecasting of oil-immersed power transformer. Electr. Power Compon. Syst. 2004, 32, 950-975. [CrossRef]
    • (2004) Electr. Power Compon. Syst. , vol.32 , pp. 950-975
    • Wang, M.H.1
  • 11
    • 85051229139 scopus 로고    scopus 로고
    • A prediction method dissolved gas content in transformer oil based on kta-SVM
    • Yongbo, T.; Juan, F. A Prediction method Dissolved Gas Content in Transformer Oil Based on KTA-SVM. Control Eng. China 2017, 24, 2263-2267.
    • (2017) Control Eng. China , vol.24 , pp. 2263-2267
    • Yongbo, T.1    Juan, F.2
  • 12
    • 85030763688 scopus 로고    scopus 로고
    • Concentration prediction of dissolved gases in transformer oil based on deep belief networks
    • Dai, J.; Song, H.; Yang, Y.; Chen, Y.; Sheng, G.; Jiang, X. Concentration Prediction of Dissolved Gases in Transformer Oil Based on Deep Belief Networks. Power Syst. Technol. 2017, 41, 2737-2742.
    • (2017) Power Syst. Technol. , vol.41 , pp. 2737-2742
    • Dai, J.1    Song, H.2    Yang, Y.3    Chen, Y.4    Sheng, G.5    Jiang, X.6
  • 13
    • 85027397193 scopus 로고    scopus 로고
    • Quality relevant and independent two block monitoring based on mutual information and kpca
    • [CrossRef]
    • Huang, J.; Yan, X. Quality relevant and independent two block monitoring based on mutual information and KPCA. IEEE Trans. Ind. Electr. 2017, 64, 6518-6527. [CrossRef]
    • (2017) IEEE Trans. Ind. Electr. , vol.64 , pp. 6518-6527
    • Huang, J.1    Yan, X.2
  • 14
    • 84858336600 scopus 로고    scopus 로고
    • Abrupt event monitoring for water environment system based on kpca and SVM
    • [CrossRef]
    • Ni, J.; Zhang, C.; Ren, L.; Yang, S. X. Abrupt event monitoring for water environment system based on KPCA and SVM. IEEE Trans. Instrum. Meas. 2012, 61, 980-989. [CrossRef]
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , pp. 980-989
    • Ni, J.1    Zhang, C.2    Ren, L.3    Yang, S.X.4
  • 15
    • 85027922927 scopus 로고    scopus 로고
    • Noise level estimation for model selection in kernel PCA denoising
    • [CrossRef] [PubMed]
    • Varon, C.; Alzate, C.; Suykens, J. A. K. Noise level estimation for model selection in kernel PCA denoising. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2650-2663. [CrossRef] [PubMed]
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , pp. 2650-2663
    • Varon, C.1    Alzate, C.2    Suykens, J.A.K.3
  • 16
    • 85031697967 scopus 로고    scopus 로고
    • Fault diagnosis of power transformer based on feature evaluation and kernel principal component analysis
    • Wu, G.; Yuan, H.; Gao, B.; Li, S. Fault Diagnosis of Power Transformer Based on Feature Evaluation and Kernel Principal Component Analysis. High Volt. Eng. 2017, 43, 2533-2540.
    • (2017) High Volt. Eng. , vol.43 , pp. 2533-2540
    • Wu, G.1    Yuan, H.2    Gao, B.3    Li, S.4
  • 17
    • 79959730129 scopus 로고    scopus 로고
    • An adaptive approach based on kpca and SVM for real-time fault diagnosis of hvcbs
    • [CrossRef]
    • Ni, J.; Zhang, C.; Yang, S. X. An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs. IEEE Trans. Power Deliv. 2011, 26, 1960-1971. [CrossRef]
    • (2011) IEEE Trans. Power Deliv. , vol.26 , pp. 1960-1971
    • Ni, J.1    Zhang, C.2    Yang, S.X.3
  • 18
    • 84899857489 scopus 로고    scopus 로고
    • Prediction of wind power based on evolutionary optimized local general regression neural network
    • Ehab, E. E. Prediction of wind power based on evolutionary optimized local general regression neural network. IET Gener. Transm. Distrib. 2014, 8, 916-923.
    • (2014) IET Gener. Transm. Distrib. , vol.8 , pp. 916-923
    • Ehab, E.E.1
  • 19
    • 84964681290 scopus 로고    scopus 로고
    • Blind image blur estimation via deep learning
    • Yan, R.; Shao, L. Blind image blur estimation via deep learning. IEEE Trans. Image Process. 2016, 25, 1910-1921.
    • (2016) IEEE Trans. Image Process. , vol.25 , pp. 1910-1921
    • Yan, R.1    Shao, L.2
  • 20
    • 80054081794 scopus 로고    scopus 로고
    • Short-term multinodal load forecasting using a modified general regression neural network
    • [CrossRef]
    • Nose-Filho, K.; Lotufo, A. D. P.; Minussi, C. R. Short-term multinodal load forecasting using a modified general regression neural network. IEEE Trans. Power Deliv. 2011, 26, 2862-2869. [CrossRef]
    • (2011) IEEE Trans. Power Deliv. , vol.26 , pp. 2862-2869
    • Nose-Filho, K.1    Lotufo, A.D.P.2    Minussi, C.R.3
  • 21
    • 36749064922 scopus 로고    scopus 로고
    • Generalized regression neural networkswithmultiple-bandwidth sharing and hybrid optimization
    • [CrossRef]
    • Goulermas, J. Y.; Zeng, X.; Liatsis, P.; Ralph, J. F. Generalized regression neural networkswithmultiple-bandwidth sharing and hybrid optimization. IEEE Trans. Syst. Man Cybern. Part B 2007, 37, 1434-1445. [CrossRef]
    • (2007) IEEE Trans. Syst. Man Cybern. Part B , vol.37 , pp. 1434-1445
    • Goulermas, J.Y.1    Zeng, X.2    Liatsis, P.3    Ralph, J.F.4
  • 22
    • 85018817314 scopus 로고    scopus 로고
    • Combined pv power forecast based on firefly algorithm-generalized regression neural network
    • Wang, X.; Huang, K.; Zheng, Y.; Li, L.; Shao, F.; Jia, L.; Xu, Q. Combined PV Power Forecast Based on Firefly Algorithm-Generalized Regression Neural Network. Power Syst. Technol. 2017, 41, 455-461.
    • (2017) Power Syst. Technol. , vol.41 , pp. 455-461
    • Wang, X.1    Huang, K.2    Zheng, Y.3    Li, L.4    Shao, F.5    Jia, L.6    Xu, Q.7
  • 23
    • 85030473459 scopus 로고    scopus 로고
    • Intelligent forecasting model for regional power grid with distributed generation
    • [CrossRef]
    • Xu, X.; Niu, D.;Wang, Q.;Wang, P.;Wu, D. D. Intelligent Forecasting Model for Regional Power Grid with Distributed Generation. IEEE Syst. J. 2017, 11, 1836-1845. [CrossRef]
    • (2017) IEEE Syst. J. , vol.11 , pp. 1836-1845
    • Xu, X.1    Niu, D.2    Wang, Q.3    Wang, P.4    Wu, D.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.