메뉴 건너뛰기




Volumn 282, Issue , 2019, Pages 14-22

What is cost-efficient phenotyping? Optimizing costs for different scenarios

Author keywords

Affordable; Cost; Imaging; Information system; Phenomics; Phenotyping

Indexed keywords

COST BENEFIT ANALYSIS; GENETICS; INFORMATION SYSTEM; PHENOTYPE; PLANT; PROCEDURES;

EID: 85051008045     PISSN: 01689452     EISSN: 18732259     Source Type: Journal    
DOI: 10.1016/j.plantsci.2018.06.015     Document Type: Article
Times cited : (106)

References (75)
  • 1
    • 85027532988 scopus 로고    scopus 로고
    • Plant Phenomics, From Sensors to Knowledge
    • Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., Bennett, M., Plant Phenomics, From Sensors to Knowledge. Curr. Biol. 27 (2017), R770–R783, 10.1016/j.cub.2017.05.055.
    • (2017) Curr. Biol. , vol.27 , pp. R770-R783
    • Tardieu, F.1    Cabrera-Bosquet, L.2    Pridmore, T.3    Bennett, M.4
  • 2
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics—technologies to relieve the phenotyping bottleneck
    • Furbank, R.T., Tester, M., Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16 (2011), 635–644, 10.1016/j.tplants.2011.09.005.
    • (2011) Trends Plant Sci. , vol.16 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 3
    • 84877682482 scopus 로고    scopus 로고
    • Future scenarios for plant phenotyping
    • Fiorani, F., Schurr, U., Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64 (2013), 267–291, 10.1146/annurev-arplant-050312-120137.
    • (2013) Annu. Rev. Plant Biol. , vol.64 , pp. 267-291
    • Fiorani, F.1    Schurr, U.2
  • 4
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., Furbank, R., Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4 (2014), 349–379, 10.3390/agronomy4030349.
    • (2014) Agronomy , vol.4 , pp. 349-379
    • Deery, D.1    Jimenez-Berni, J.2    Jones, H.3    Sirault, X.4    Furbank, R.5
  • 5
  • 7
    • 84908537939 scopus 로고    scopus 로고
    • A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters
    • Bitella, G., Rossi, R., Bochicchio, R., Perniola, M., Amato, M., A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors (Switzerland) 14 (2014), 19639–19659, 10.3390/s141019639.
    • (2014) Sensors (Switzerland) , vol.14 , pp. 19639-19659
    • Bitella, G.1    Rossi, R.2    Bochicchio, R.3    Perniola, M.4    Amato, M.5
  • 8
    • 85012036917 scopus 로고    scopus 로고
    • Phylis: a low-cost portable visible range spectrometer for soil and plants
    • Aitkenhead, M.J., Gaskin, G.J., Lafouge, N., Hawes, C., Phylis: a low-cost portable visible range spectrometer for soil and plants. Sensors (Switzerland), 17, 2017, 10.3390/s17010099.
    • (2017) Sensors (Switzerland) , vol.17
    • Aitkenhead, M.J.1    Gaskin, G.J.2    Lafouge, N.3    Hawes, C.4
  • 9
    • 84871597781 scopus 로고    scopus 로고
    • Physiological Breeding II: A Field Guide to Wheat Phenotyping
    • CIMMYT Mexico
    • Pask, A., Pietragalla, J., Mullan, D., Reynolds, M., Physiological Breeding II: A Field Guide to Wheat Phenotyping. 2012, CIMMYT, Mexico, 10.1017/CBO9781107415324.004.
    • (2012)
    • Pask, A.1    Pietragalla, J.2    Mullan, D.3    Reynolds, M.4
  • 11
    • 84923689465 scopus 로고    scopus 로고
    • Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area
    • Easlon, H.M., Bloom, A.J., Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Appl. Plant Sci., 2, 2014, 1400033, 10.3732/apps.1400033.
    • (2014) Appl. Plant Sci. , vol.2
    • Easlon, H.M.1    Bloom, A.J.2
  • 12
    • 84951966535 scopus 로고    scopus 로고
    • An opinion on imaging challenges in phenotyping field crops
    • Kelly, D., Vatsa, A., Mayham, W., Ng, L., Thompson, A., Kazic, T., An opinion on imaging challenges in phenotyping field crops. Mach. Vis. Appl. 27 (2016), 681–694, 10.1007/s00138-015-0728-4.
    • (2016) Mach. Vis. Appl. , vol.27 , pp. 681-694
    • Kelly, D.1    Vatsa, A.2    Mayham, W.3    Ng, L.4    Thompson, A.5    Kazic, T.6
  • 13
    • 84937131150 scopus 로고    scopus 로고
    • Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer
    • Intaravannea, Y., Sumriddetchkajorn, S., Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Comput. Electron. Agric. 116 (2015), 228–233, 10.1016/j.compag.2015.07.005.
    • (2015) Comput. Electron. Agric. , vol.116 , pp. 228-233
    • Intaravannea, Y.1    Sumriddetchkajorn, S.2
  • 14
    • 85009755007 scopus 로고    scopus 로고
    • Evaluation of the SeedCounter, a mobile application for grain phenotyping
    • Komyshev, E., Genaev, M., Afonnikov, D., Evaluation of the SeedCounter, a mobile application for grain phenotyping. Front. Plant Sci. 7 (2017), 1–9, 10.3389/fpls.2016.01990.
    • (2017) Front. Plant Sci. , vol.7 , pp. 1-9
    • Komyshev, E.1    Genaev, M.2    Afonnikov, D.3
  • 16
    • 85012195804 scopus 로고    scopus 로고
    • U. Rascher, Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution, Precis. Agric.
    • A. Burkart, V.L. Hecht, T. Kraska, U. Rascher, Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution, Precis. Agric. (2017) 1–13. https://doi.org/10.1007/s11119-017-9504-y.
    • (2017) , pp. 1-13
    • Burkart, A.1    Hecht, V.L.2    Kraska, T.3
  • 18
    • 85006277393 scopus 로고    scopus 로고
    • Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV
    • Duan, T., Zheng, B., Guo, W., Ninomiya, S., Guo, Y., Chapman, S.C., Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct. Plant Biol., 2016, 10.1071/FP16123.
    • (2016) Funct. Plant Biol.
    • Duan, T.1    Zheng, B.2    Guo, W.3    Ninomiya, S.4    Guo, Y.5    Chapman, S.C.6
  • 19
    • 77955920213 scopus 로고    scopus 로고
    • Why are wheat yields stagnating in Europe? A comprehensive data analysis for France
    • Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F.X., Huard, F., Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Food Crop. Res. 119 (2010), 201–212, 10.1016/j.fcr.2010.07.012.
    • (2010) Food Crop. Res. , vol.119 , pp. 201-212
    • Brisson, N.1    Gate, P.2    Gouache, D.3    Charmet, G.4    Oury, F.X.5    Huard, F.6
  • 20
    • 84898928269 scopus 로고    scopus 로고
    • Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen
    • Sadras, V.O., Richards, R.A., Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. J. Exp. Bot. 65 (2014), 1981–1995, 10.1093/jxb/eru061.
    • (2014) J. Exp. Bot. , vol.65 , pp. 1981-1995
    • Sadras, V.O.1    Richards, R.A.2
  • 23
    • 84924917101 scopus 로고    scopus 로고
    • Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images
    • Guo, W., Fukatsu, T., Ninomiya, S., Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods, 11, 2015, 10.1186/s13007-015-0047-9.
    • (2015) Plant Methods , vol.11
    • Guo, W.1    Fukatsu, T.2    Ninomiya, S.3
  • 25
    • 85046751361 scopus 로고    scopus 로고
    • The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach
    • Tardieu, F., Simonneau, T., Muller, B., The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69 (2018), 733–759, 10.1146/annurev-arplant-042817-040218.
    • (2018) Annu. Rev. Plant Biol. , vol.69 , pp. 733-759
    • Tardieu, F.1    Simonneau, T.2    Muller, B.3
  • 26
    • 84928660960 scopus 로고    scopus 로고
    • Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level
    • hristian Rose, J.C., Paulus, S., Kuhlmann, H., Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors (Basel) 15 (2015), 9651–9665, 10.3390/s150509651.
    • (2015) Sensors (Basel) , vol.15 , pp. 9651-9665
    • hristian Rose, J.C.1    Paulus, S.2    Kuhlmann, H.3
  • 27
    • 84928718366 scopus 로고    scopus 로고
    • The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool
    • Müller-Linow, M., Pinto-Espinosa, F., Scharr, H., Rascher, U., The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Methods, 11, 2015, 11, 10.1186/s13007-015-0052-z.
    • (2015) Plant Methods , vol.11 , pp. 11
    • Müller-Linow, M.1    Pinto-Espinosa, F.2    Scharr, H.3    Rascher, U.4
  • 28
    • 85064286469 scopus 로고    scopus 로고
    • Studying Phenotypic Variability in Crops Using a Hand-held Sensor Platform, IROS Work
    • Agri-Food Robot
    • Khanna, R., Rehder, J., Martin, M., Galceran, E., Siegwart, R., Studying Phenotypic Variability in Crops Using a Hand-held Sensor Platform, IROS Work. 2015, Agri-Food Robot.
    • (2015)
    • Khanna, R.1    Rehder, J.2    Martin, M.3    Galceran, E.4    Siegwart, R.5
  • 31
    • 0348251330 scopus 로고    scopus 로고
    • Review of methods for in situ leaf area index determination: part I. Theories, sensors and hemispherical photography
    • Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., Review of methods for in situ leaf area index determination: part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 121 (2004), 19–35, 10.1016/J.AGRFORMET.2003.08.027.
    • (2004) Agric. For. Meteorol. , vol.121 , pp. 19-35
    • Jonckheere, I.1    Fleck, S.2    Nackaerts, K.3    Muys, B.4    Coppin, P.5    Weiss, M.6    Baret, F.7
  • 32
    • 0347301547 scopus 로고    scopus 로고
    • Review of methods for in situ leaf area index (LAI) determination, part II: estimation of LAI, errors and sampling
    • Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P., Review of methods for in situ leaf area index (LAI) determination, part II: estimation of LAI, errors and sampling. Agric. For. Meteorol. 121 (2004), 37–53, 10.1016/j.agrformet.2003.08.001.
    • (2004) Agric. For. Meteorol. , vol.121 , pp. 37-53
    • Weiss, M.1    Baret, F.2    Smith, G.J.3    Jonckheere, I.4    Coppin, P.5
  • 33
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
    • Berni, J., Zarco-Tejada, P.J., Suarez, L., Fereres, E., Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 47 (2009), 722–738, 10.1109/TGRS.2008.2010457.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 722-738
    • Berni, J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 34
    • 84923012445 scopus 로고    scopus 로고
    • Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping
    • Phenotyping, H.F., Dreccer, M.F., Holland, E., Zheng, B., Ling, T.J., Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy. 4 (2014), 279–301, 10.3390/agronomy4020279.
    • (2014) Agronomy. , vol.4 , pp. 279-301
    • Phenotyping, H.F.1    Dreccer, M.F.2    Holland, E.3    Zheng, B.4    Ling, T.J.5
  • 35
    • 85064284662 scopus 로고    scopus 로고
    • Leaf rolling in maize crops: from leaf scoring to canopy level measurements for phenotyping, BioRxiv.
    • F. Baret, S. Madec, K. Irfan, J. Lopez, A. Comar, D. Dutartre, S. Praud, M.H. Tixier, Leaf rolling in maize crops: from leaf scoring to canopy level measurements for phenotyping, BioRxiv. (2017) 1–35.
    • (2017) , pp. 1-35
    • Baret, F.1    Madec, S.2    Irfan, K.3    Lopez, J.4    Comar, A.5    Dutartre, D.6    Praud, S.7    Tixier, M.H.8
  • 37
    • 85020307153 scopus 로고    scopus 로고
    • Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
    • Jin, X., Liu, S., Baret, F., Hemerlé, M., Comar, A., Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 198 (2017), 105–114, 10.1016/J.RSE.2017.06.007.
    • (2017) Remote Sens. Environ. , vol.198 , pp. 105-114
    • Jin, X.1    Liu, S.2    Baret, F.3    Hemerlé, M.4    Comar, A.5
  • 38
    • 85035787290 scopus 로고    scopus 로고
    • Comparative performance of ground versus aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization I n r e v i e w
    • Gracia-Romero, A., Kefauver, S.C., Vergara-Diaz, O., Zaman-Allah, M.A., Prasanna, B.M., Cairns, J.E., Araus, J.L., Comparative performance of ground versus aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization I n r e v i e w. Front. Plant Sci. 8 (2017), 1–13, 10.3389/fpls.2017.02004.
    • (2017) Front. Plant Sci. , vol.8 , pp. 1-13
    • Gracia-Romero, A.1    Kefauver, S.C.2    Vergara-Diaz, O.3    Zaman-Allah, M.A.4    Prasanna, B.M.5    Cairns, J.E.6    Araus, J.L.7
  • 39
    • 85019682833 scopus 로고    scopus 로고
    • High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing
    • Holman, F.H., Riche, A.B., Michalski, A., Castle, M., Wooster, M.J., Hawkesford, M.J., High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens., 8, 2016, 10.3390/rs8121031.
    • (2016) Remote Sens. , vol.8
    • Holman, F.H.1    Riche, A.B.2    Michalski, A.3    Castle, M.4    Wooster, M.J.5    Hawkesford, M.J.6
  • 42
    • 84961989773 scopus 로고    scopus 로고
    • Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
    • Li, W., Niu, Z., Chen, H., Li, D., Wu, M., Zhao, W., Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 67 (2016), 637–648, 10.1016/j.ecolind.2016.03.036.
    • (2016) Ecol. Indic. , vol.67 , pp. 637-648
    • Li, W.1    Niu, Z.2    Chen, H.3    Li, D.4    Wu, M.5    Zhao, W.6
  • 43
    • 84945333626 scopus 로고    scopus 로고
    • LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?
    • Lin, Y., LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?. Comput. Electron. Agric. 119 (2015), 61–73, 10.1016/j.compag.2015.10.011.
    • (2015) Comput. Electron. Agric. , vol.119 , pp. 61-73
    • Lin, Y.1
  • 44
    • 84907101982 scopus 로고    scopus 로고
    • Green area index from an unmanned aerial system over wheat and rapeseed crops
    • Verger, A., Vigneau, N., Chéron, C., Gilliot, J.M., Comar, A., Baret, F., Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 152 (2014), 654–664, 10.1016/j.rse.2014.06.006.
    • (2014) Remote Sens. Environ. , vol.152 , pp. 654-664
    • Verger, A.1    Vigneau, N.2    Chéron, C.3    Gilliot, J.M.4    Comar, A.5    Baret, F.6
  • 45
    • 84945980402 scopus 로고    scopus 로고
    • The impact of sunlight conditions on the consistency of vegetation indices in croplands-Effective usage of vegetation indices from continuous ground-based spectral measurements
    • Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., Matsuura, S., The impact of sunlight conditions on the consistency of vegetation indices in croplands-Effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sens. 7 (2015), 14079–14098, 10.3390/rs71014079.
    • (2015) Remote Sens. , vol.7 , pp. 14079-14098
    • Ishihara, M.1    Inoue, Y.2    Ono, K.3    Shimizu, M.4    Matsuura, S.5
  • 46
    • 84979771474 scopus 로고    scopus 로고
    • An analysis of the effect of the bidirectional reflectance distribution function on remote sensing imagery accuracy from small unmanned aircraft systems
    • Stark, B., Zhao, T., Chen, Y., An analysis of the effect of the bidirectional reflectance distribution function on remote sensing imagery accuracy from small unmanned aircraft systems. 2016 Int. Conf. Unmanned Aircr. Syst., ICUAS, Arlington, VA, USA, 2016, 10.1109/ICUAS.2016.7502566.
    • (2016) 2016 Int. Conf. Unmanned Aircr. Syst., ICUAS, Arlington, VA, USA
    • Stark, B.1    Zhao, T.2    Chen, Y.3
  • 47
    • 84878754086 scopus 로고    scopus 로고
    • A flexible, low-cost cart for proximal sensing
    • White, J.W., Conley, M.M., A flexible, low-cost cart for proximal sensing. Crop Sci. 53 (2013), 1646–1649, 10.2135/cropsci2013.01.0054.
    • (2013) Crop Sci. , vol.53 , pp. 1646-1649
    • White, J.W.1    Conley, M.M.2
  • 49
    • 84908502596 scopus 로고    scopus 로고
    • Development of a mobile multispectral imaging platform for precise field phenotyping
    • Svensgaard, J., Roitsch, T., Christensen, S., Development of a mobile multispectral imaging platform for precise field phenotyping. Agronomy 4 (2014), 322–336, 10.3390/agronomy4030322.
    • (2014) Agronomy , vol.4 , pp. 322-336
    • Svensgaard, J.1    Roitsch, T.2    Christensen, S.3
  • 51
    • 85031015360 scopus 로고    scopus 로고
    • The thorvald II agricultural robotic system
    • Grimstad, L., From, P., The thorvald II agricultural robotic system. Robotics, 6, 2017, 24, 10.3390/robotics6040024.
    • (2017) Robotics , vol.6 , pp. 24
    • Grimstad, L.1    From, P.2
  • 52
    • 85010850421 scopus 로고    scopus 로고
    • Vinobot and vinoculer: two robotic platforms for high-throughput field phenotyping
    • Shafiekhani, A., Kadam, S., Fritschi, F.B., Desouza, G.N., Vinobot and vinoculer: two robotic platforms for high-throughput field phenotyping. Sensors 17 (2017), 1–23, 10.3390/s17010214.
    • (2017) Sensors , vol.17 , pp. 1-23
    • Shafiekhani, A.1    Kadam, S.2    Fritschi, F.B.3    Desouza, G.N.4
  • 54
    • 85027958905 scopus 로고    scopus 로고
    • High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform
    • Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., Tardieu, F., High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 212 (2016), 269–281, 10.1111/nph.14027.
    • (2016) New Phytol. , vol.212 , pp. 269-281
    • Cabrera-Bosquet, L.1    Fournier, C.2    Brichet, N.3    Welcker, C.4    Suard, B.5    Tardieu, F.6
  • 55
    • 85026818533 scopus 로고    scopus 로고
    • Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation
    • Villarrubia, G., De Paz, J.F., De La Iglesia, D.H., Bajo, J., Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors (Switzerland), 2017, 17, 10.3390/s17081775.
    • (2017) Sensors (Switzerland) , pp. 17
    • Villarrubia, G.1    De Paz, J.F.2    De La Iglesia, D.H.3    Bajo, J.4
  • 56
    • 85052018756 scopus 로고    scopus 로고
    • T. Le Cornu, O. Gonzalez-Navarro, C. Lister, S. Orford, S. Laycock, G. Finlayson, T. Stitt, M. Clark, M. Bevan, S. Griffiths, CropQuant: An automated and scalable field phenotyping platform for crop monitoring and trait measurements to facilitate breeding and digital agriculture, BioRxiv. 1–17. doi:.
    • J. Zhou, D. Reynolds, D. Websdale, T. Le Cornu, O. Gonzalez-Navarro, C. Lister, S. Orford, S. Laycock, G. Finlayson, T. Stitt, M. Clark, M. Bevan, S. Griffiths, CropQuant: An automated and scalable field phenotyping platform for crop monitoring and trait measurements to facilitate breeding and digital agriculture, BioRxiv. (2017) 1–17. doi: https://doi.org/10.1101/161547.
    • (2017)
    • Zhou, J.1    Reynolds, D.2    Websdale, D.3
  • 57
    • 79952849576 scopus 로고    scopus 로고
    • Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia
    • Chenu, K., Cooper, M., Hammer, G.L., Mathews, K.L., Dreccer, M.F., Chapman, S.C., Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 62 (2011), 1743–1755, 10.1093/jxb/erq459.
    • (2011) J. Exp. Bot. , vol.62 , pp. 1743-1755
    • Chenu, K.1    Cooper, M.2    Hammer, G.L.3    Mathews, K.L.4    Dreccer, M.F.5    Chapman, S.C.6
  • 58
    • 84893650941 scopus 로고    scopus 로고
    • Characterizing drought stress and trait influence on maize yield under current and future conditions
    • Harrison, M.T., Tardieu, F., Dong, Z., Messina, C.D., Hammer, G.L., Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Chang. Biol. 20 (2014), 867–878, 10.1111/gcb.12381.
    • (2014) Glob. Chang. Biol. , vol.20 , pp. 867-878
    • Harrison, M.T.1    Tardieu, F.2    Dong, Z.3    Messina, C.D.4    Hammer, G.L.5
  • 59
    • 84959467829 scopus 로고    scopus 로고
    • Envirotyping for deciphering environmental impacts on crop plants
    • Xu, Y., Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 129 (2016), 653–673, 10.1007/s00122-016-2691-5.
    • (2016) Theor. Appl. Genet. , vol.129 , pp. 653-673
    • Xu, Y.1
  • 60
    • 84900460819 scopus 로고    scopus 로고
    • Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product
    • Cooper, M., Gho, C., Leafgren, R., Tang, T., Messina, C., Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65 (2014), 6191–6194, 10.1093/jxb/eru064.
    • (2014) J. Exp. Bot. , vol.65 , pp. 6191-6194
    • Cooper, M.1    Gho, C.2    Leafgren, R.3    Tang, T.4    Messina, C.5
  • 61
    • 85064285466 scopus 로고    scopus 로고
    • Method for Determining Drought Tolerance in Maize, PCT/EP2016/063067
    • Murigneux, A., Henriot, F., Personne, M., Renault, M., Delluc, C., Debeuf, R., Method for Determining Drought Tolerance in Maize, PCT/EP2016/063067. 2015 https://patents.google.com/patent/WO2016198471A1/en.
    • (2015)
    • Murigneux, A.1    Henriot, F.2    Personne, M.3    Renault, M.4    Delluc, C.5    Debeuf, R.6
  • 62
    • 84930955524 scopus 로고    scopus 로고
    • LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget
    • Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S.K., Hash, C.T., LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J. Exp. Bot. 66 (2015), 5581–5593, 10.1093/jxb/erv251.
    • (2015) J. Exp. Bot. , vol.66 , pp. 5581-5593
    • Vadez, V.1    Kholová, J.2    Hummel, G.3    Zhokhavets, U.4    Gupta, S.K.5    Hash, C.T.6
  • 63
    • 85023605039 scopus 로고    scopus 로고
    • Distinct controls of leaf widening and elongation by light and evaporative demand in maize
    • Lacube, S., Fournier, C., Palaffre, C., Millet, E.J., Tardieu, F., Parent, B., Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant Cell Environ. 40 (2017), 2017–2028.
    • (2017) Plant Cell Environ. , vol.40 , pp. 2017-2028
    • Lacube, S.1    Fournier, C.2    Palaffre, C.3    Millet, E.J.4    Tardieu, F.5    Parent, B.6
  • 65
    • 84920374584 scopus 로고    scopus 로고
    • OpenCV Computer Vision With Python
    • 1st ed. Packt Publishing Ltd. Birmingham, UK
    • Howse, J., OpenCV Computer Vision With Python. 1st ed., 2013, Packt Publishing Ltd., Birmingham, UK.
    • (2013)
    • Howse, J.1
  • 66
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S., Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21 (2016), 110–124, 10.1016/j.tplants.2015.10.015.
    • (2016) Trends Plant Sci. , vol.21 , pp. 110-124
    • Singh, A.1    Ganapathysubramanian, B.2    Singh, A.K.3    Sarkar, S.4
  • 69
    • 84901748701 scopus 로고    scopus 로고
    • Integrated analysis platform: an open-source information system for high-throughput plant phenotyping
    • Klukas, C., Chen, D., Pape, J.-M., Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 165 (2014), 506–518, 10.1104/pp.113.233932.
    • (2014) Plant Physiol. , vol.165 , pp. 506-518
    • Klukas, C.1    Chen, D.2    Pape, J.-M.3
  • 70
    • 85006269855 scopus 로고    scopus 로고
    • Plant phenotyping: increasing throughput and precision at multiple scales
    • Hawkesford, M.J., Lorence, A., Plant phenotyping: increasing throughput and precision at multiple scales. Funct. Plant Biol., 2017, 10.1071/FP.
    • (2017) Funct. Plant Biol.
    • Hawkesford, M.J.1    Lorence, A.2
  • 73
    • 84870244577 scopus 로고    scopus 로고
    • An ontology-centric architecture for extensible scientific data management systems
    • Li, Y.F., Kennedy, G., Ngoran, F., Wu, P., Hunter, J., An ontology-centric architecture for extensible scientific data management systems. Future Gener. Comput. Syst. 29 (2013), 641–653, 10.1016/j.future.2011.06.007.
    • (2013) Future Gener. Comput. Syst. , vol.29 , pp. 641-653
    • Li, Y.F.1    Kennedy, G.2    Ngoran, F.3    Wu, P.4    Hunter, J.5
  • 75
    • 85043758936 scopus 로고    scopus 로고
    • Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding
    • Crain, J., Mondal, S., Rutkoski, J., Singh, R.P., Poland, J., Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome, 11, 2018, 0, 10.3835/plantgenome2017.05.0043.
    • (2018) Plant Genome , vol.11 , pp. 0
    • Crain, J.1    Mondal, S.2    Rutkoski, J.3    Singh, R.P.4    Poland, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.