메뉴 건너뛰기




Volumn 38, Issue 23, 2017, Pages 6816-6845

Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: A review

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; CULTIVATION; FOOD SUPPLY; FORECASTING; INFORMATION SERVICES; REMOTE SENSING; SATELLITE IMAGERY; SPATIAL DISTRIBUTION;

EID: 85050872372     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2017.1365390     Document Type: Article
Times cited : (53)

References (147)
  • 1
    • 84890837785 scopus 로고    scopus 로고
    • Detecting Sirex Noctilio Grey-Attacked and Lightning-Struck Pine Trees Using Airborne Hyperspectral Data, Random Forest and Support Vector Machines Classifiers
    • Abdel-Rahman, E. M., O. Mutanga, E. Adam, and R. Ismail. 2014. “Detecting Sirex Noctilio Grey-Attacked and Lightning-Struck Pine Trees Using Airborne Hyperspectral Data, Random Forest and Support Vector Machines Classifiers.” ISPRS Journal of Photogrammetry and Remote Sensing 88: 48–59. doi:10.1016/j.isprsjprs.2013.11.013.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.88 , pp. 48-59
    • Abdel-Rahman, E.M.1    Mutanga, O.2    Adam, E.3    Ismail, R.4
  • 2
    • 70350618328 scopus 로고    scopus 로고
    • Spectral Discrimination of Papyrus Vegetation (Cyperus Papyrus L.) in Swamp Wetlands Using Field Spectrometry
    • Adam, E., and O. Mutanga. 2009. “Spectral Discrimination of Papyrus Vegetation (Cyperus Papyrus L.) in Swamp Wetlands Using Field Spectrometry.” ISPRS Journal of Photogrammetry and Remote Sensing 64: 612–620. doi:10.1016/j.isprsjprs.2009.04.004.
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , pp. 612-620
    • Adam, E.1    Mutanga, O.2
  • 3
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review
    • Adam, E., O. Mutanga, and D. Rugege. 2010. “Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review.” Wetlands Ecology and Management 18: 281–296. doi:10.1007/s11273-009-9169-z.
    • (2010) Wetlands Ecology and Management , vol.18 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 4
    • 84903143000 scopus 로고    scopus 로고
    • Evaluating the Impact of Red-Edge Band from Rapideye Image for Classifying Insect Defoliation Levels
    • Adelabu, S., O. Mutanga, and E. Adam. 2014. “Evaluating the Impact of Red-Edge Band from Rapideye Image for Classifying Insect Defoliation Levels.” ISPRS Journal of Photogrammetry and Remote Sensing 95: 34–41. doi:10.1016/j.isprsjprs.2014.05.013.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.95 , pp. 34-41
    • Adelabu, S.1    Mutanga, O.2    Adam, E.3
  • 6
    • 84888859447 scopus 로고    scopus 로고
    • Optimizing Spectral Resolutions for the Classification of C3 and C4 Grass Species, Using Wavelengths of Known Absorption Features
    • Adjorlolo, C., M. A. Cho, O. Mutanga, and R. Ismail. 2012. “Optimizing Spectral Resolutions for the Classification of C3 and C4 Grass Species, Using Wavelengths of Known Absorption Features.” Journal of Applied Remote Sensing 6: 063560–063565. doi:10.1117/1.JRS.6.063560.
    • (2012) Journal of Applied Remote Sensing , vol.6 , pp. 063560-063565
    • Adjorlolo, C.1    Cho, M.A.2    Mutanga, O.3    Ismail, R.4
  • 7
    • 85064104875 scopus 로고    scopus 로고
    • Development of a Spatial Equilibrium Modelling Approach to Study the Impact of Policy Intervention on Cereals Availability
    • Cereals Availability Study in Ethiopia. Ispra, Italy: JRC
    • Alemu, D., G. Ayele, B. Behute, Y. Beyone, R. Dewana, B. Fedaku, H. R. Vergas, et al. 2008. Development of a Spatial Equilibrium Modelling Approach to Study the Impact of Policy Intervention on Cereals Availability (JRC Scientific and Technical Report), Cereals Availability Study in Ethiopia. Ispra, Italy: JRC.
    • (2008) (JRC Scientific and Technical Report)
    • Alemu, D.1    Ayele, G.2    Behute, B.3    Beyone, Y.4    Dewana, R.5    Fedaku, B.6    Vergas, H.R.7
  • 9
    • 0032084065 scopus 로고    scopus 로고
    • Biophysical and Biochemical Sources of Variability in Canopy Reflectance
    • Asner, G. P. 1998. “Biophysical and Biochemical Sources of Variability in Canopy Reflectance.” Remote Sensing of Environment 64: 234–253. doi:10.1016/S0034-4257(98)00014-5.
    • (1998) Remote Sensing of Environment , vol.64 , pp. 234-253
    • Asner, G.P.1
  • 10
    • 84874788283 scopus 로고    scopus 로고
    • Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs
    • Atzberger, C. 2013. “Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs.” Remote Sensing 5: 949–981. doi:10.3390/rs5020949.
    • (2013) Remote Sensing , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 13
    • 0036889265 scopus 로고    scopus 로고
    • Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico
    • Báez-González, A. D., P.-Y. Chen, M. Tiscareno-Lopez, and R. Srinivasan. 2002. “Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico.” Crop Science 42: 1943–1949. doi:10.2135/cropsci2002.1943.
    • (2002) Crop Science , vol.42 , pp. 1943-1949
    • Báez-González, A.D.1    Chen, P.-Y.2    Tiscareno-Lopez, M.3    Srinivasan, R.4
  • 14
    • 0026305589 scopus 로고
    • Potentials and Limits of Vegetation Indices for LAI and APAR Assessment
    • Baret, F., and G. Guyot. 1991. “Potentials and Limits of Vegetation Indices for LAI and APAR Assessment.” Remote Sensing of Environment 35: 161–173. doi:10.1016/0034-4257(91)90009-U.
    • (1991) Remote Sensing of Environment , vol.35 , pp. 161-173
    • Baret, F.1    Guyot, G.2
  • 16
    • 84989829890 scopus 로고    scopus 로고
    • Estimating Maize Biomass and Yield over Large Areas Using High Spatial and Temporal Resolution Sentinel-2 like Remote Sensing Data
    • Battude, M., A. Al Bitar, D. Morin, J. Cros, M. Huc, C. M. Sicre, V. Le Dantec, and V. Demarez. 2016. “Estimating Maize Biomass and Yield over Large Areas Using High Spatial and Temporal Resolution Sentinel-2 like Remote Sensing Data.” Remote Sensing of Environment 184: 668– 681. doi:10.1016/j.rse.2016.07.030.
    • (2016) Remote Sensing of Environment , vol.184 , pp. 668-681
    • Battude, M.1    Al Bitar, A.2    Morin, D.3    Cros, J.4    Huc, M.5    Sicre, C.M.6    Le Dantec, V.7    Demarez, V.8
  • 17
    • 77949487217 scopus 로고    scopus 로고
    • A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data
    • Becker-Reshef, I., E. Vermote, M. Lindeman, and C. Justice. 2010. “A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data.” Remote Sensing of Environment 114: 1312–1323. doi:10.1016/j.rse.2010.01.010.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1312-1323
    • Becker-Reshef, I.1    Vermote, E.2    Lindeman, M.3    Justice, C.4
  • 18
    • 84927804350 scopus 로고    scopus 로고
    • Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites
    • Belward, A. S., and J. O. Skøien. 2015. “Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites.” ISPRS Journal of Photogrammetry and Remote Sensing 103: 115–128. doi:10.1016/j.isprsjprs.2014.03.009.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.103 , pp. 115-128
    • Belward, A.S.1    Skøien, J.O.2
  • 19
    • 0027787177 scopus 로고
    • On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna
    • Benedetti, R., and P. Rossini. 1993. “On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna.” Remote Sensing of Environment 45: 311–326. doi:10.1016/0034-4257(93)90113-C.
    • (1993) Remote Sensing of Environment , vol.45 , pp. 311-326
    • Benedetti, R.1    Rossini, P.2
  • 20
    • 79551669816 scopus 로고    scopus 로고
    • Quantifying the Area and Spatial Distribution of Double-And Triple-Cropping Croplands in India with Multi-Temporal MODIS Imagery in 2005
    • Biradar, C. M., and X. Xiao. 2011. “Quantifying the Area and Spatial Distribution of Double-And Triple-Cropping Croplands in India with Multi-Temporal MODIS Imagery in 2005.” International Journal of Remote Sensing 32: 367–386. doi:10.1080/01431160903464179.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 367-386
    • Biradar, C.M.1    Xiao, X.2
  • 22
    • 85014282191 scopus 로고    scopus 로고
    • Satellite-Based Assessment of Yield Variation and Its Determinants in Smallholder African Systems
    • Burke, M., and D. B. Lobell. 2017. “Satellite-Based Assessment of Yield Variation and Its Determinants in Smallholder African Systems.” Proceedings of the National Academy of Sciences 114 (9): 2189–2194. doi:10.1073/pnas.1616919114.
    • (2017) Proceedings of the National Academy of Sciences , vol.114 , Issue.9 , pp. 2189-2194
    • Burke, M.1    Lobell, D.B.2
  • 24
    • 84926255623 scopus 로고    scopus 로고
    • From Tragedy to Renaissance: Improving Agricultural Data for Better Policies
    • Carletto, C., D. Jolliffe, and R. Banerjee. 2015. “From Tragedy to Renaissance: Improving Agricultural Data for Better Policies.” The Journal of Development Studies 51: 133–148. doi:10.1080/00220388.2014.968140.
    • (2015) The Journal of Development Studies , vol.51 , pp. 133-148
    • Carletto, C.1    Jolliffe, D.2    Banerjee, R.3
  • 25
    • 2942746674 scopus 로고    scopus 로고
    • Design and Optimisation of a Large-Area Process-Based Model for Annual Crops
    • Challinor, A., T. Wheeler, P. Craufurd, J. Slingo, and D. Grimes. 2004. “Design and Optimisation of a Large-Area Process-Based Model for Annual Crops.” Agricultural and Forest Meteorology 124: 99– 120. doi:10.1016/j.agrformet.2004.01.002.
    • (2004) Agricultural and Forest Meteorology , vol.124 , pp. 99-120
    • Challinor, A.1    Wheeler, T.2    Craufurd, P.3    Slingo, J.4    Grimes, D.5
  • 26
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery
    • Chan, J. C.-W., and D. Paelinckx. 2008. “Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery.” Remote Sensing of Environment 112: 2999–3011. doi:10.1016/j. rse.2008.02.011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 27
    • 0344272412 scopus 로고    scopus 로고
    • Corn (Zea mays L.) Yield Prediction using Multispectral and Multidate Reflectance
    • Chang, J., D. A. Clay, K. Dalsted, S. Clay, and M. O’Neill. 2003. Corn (Zea mays L.) Yield Prediction using Multispectral and Multidate Reflectance. Agronomy Journal 95 (6): 1447–1453. doi: 10.2134/agronj2003.1447
    • (2003) Agronomy Journal , vol.95 , Issue.6 , pp. 1447-1453
    • Chang, J.1    Clay, D.A.2    Dalsted, K.3    Clay, S.4    O’Neill, M.5
  • 28
    • 0002443314 scopus 로고    scopus 로고
    • Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy
    • Clark, R. N. 1999. “Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy.” Manual of Remote Sensing 3: 3–58.
    • (1999) Manual of Remote Sensing , vol.3 , pp. 3-58
    • Clark, R.N.1
  • 29
    • 0034082989 scopus 로고    scopus 로고
    • Using Vegetation Reflectance Variability for Species Level Classification of Hyperspectral Data
    • Cochrane, M. 2000. “Using Vegetation Reflectance Variability for Species Level Classification of Hyperspectral Data.” International Journal of Remote Sensing 21: 2075–2087. doi:10.1080/01431160050021303.
    • (2000) International Journal of Remote Sensing , vol.21 , pp. 2075-2087
    • Cochrane, M.1
  • 33
    • 79951749902 scopus 로고    scopus 로고
    • The Malawi Agricultural Input Subsidy Programme: 2005/06 to 2008/09
    • Dorward, A., and E. Chirwa. 2011. “The Malawi Agricultural Input Subsidy Programme: 2005/06 to 2008/09.” International Journal of Agricultural Sustainability 9 (1): 232–247. doi:10.3763/ijas.2010.0567.
    • (2011) International Journal of Agricultural Sustainability , vol.9 , Issue.1 , pp. 232-247
    • Dorward, A.1    Chirwa, E.2
  • 36
    • 84919824337 scopus 로고    scopus 로고
    • Intra-And-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral Rapideye Sensor and Advanced Machine Learning Algorithms
    • Dube, T., O. Mutanga, A. Elhadi, and R. Ismail. 2014. “Intra-And-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral Rapideye Sensor and Advanced Machine Learning Algorithms.” Sensors 14: 15348–15370. doi:10.3390/s140815348.
    • (2014) Sensors , vol.14 , pp. 15348-15370
    • Dube, T.1    Mutanga, O.2    Elhadi, A.3    Ismail, R.4
  • 37
    • 84938307417 scopus 로고    scopus 로고
    • Predicting Eucalyptus Spp. Stand Volume in Zululand, South Africa: An Analysis Using a Stochastic Gradient Boosting Regression Ensemble with Multi-Source Data Sets
    • Dube, T., O. Mutanga, E. M. Abdel-Rahman, R. Ismail, and R. Slotow. 2015. “Predicting Eucalyptus Spp. Stand Volume in Zululand, South Africa: An Analysis Using a Stochastic Gradient Boosting Regression Ensemble with Multi-Source Data Sets.” International Journal of Remote Sensing 36: 3751–3772. doi:10.1080/01431161.2015.1070316.
    • (2015) International Journal of Remote Sensing , vol.36 , pp. 3751-3772
    • Dube, T.1    Mutanga, O.2    Abdel-Rahman, E.M.3    Ismail, R.4    Slotow, R.5
  • 38
    • 16844370133 scopus 로고    scopus 로고
    • Automated Registration of Hyperspectral Images for Precision Agriculture
    • Erives, H., and G. J. Fitzgerald. 2005. “Automated Registration of Hyperspectral Images for Precision Agriculture.” Computers and Electronics in Agriculture 47: 103–119. doi:10.1016/j. compag.2004.11.016.
    • (2005) Computers and Electronics in Agriculture , vol.47 , pp. 103-119
    • Erives, H.1    Fitzgerald, G.J.2
  • 39
    • 84863726198 scopus 로고    scopus 로고
    • Global Population Trends and Policy Options
    • Ezeh, A. C., J. Bongaarts, and B. Mberu. 2012. “Global Population Trends and Policy Options.” The Lancet 380: 142–148. doi:10.1016/S0140-6736(12)60696-5.
    • (2012) The Lancet , vol.380 , pp. 142-148
    • Ezeh, A.C.1    Bongaarts, J.2    Mberu, B.3
  • 40
    • 43049100761 scopus 로고    scopus 로고
    • Corn-Yield Estimation through Assimilation of Remotely Sensed Data into the CSM-CERES-Maize Model
    • Fang, H., S. Liang, G. Hoogenboom, J. Teasdale, and M. Cavigelli. 2008. “Corn-Yield Estimation through Assimilation of Remotely Sensed Data into the CSM-CERES-Maize Model.” International Journal of Remote Sensing 29 (10): 3011–3032. doi:10.1080/01431160701408386.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.10 , pp. 3011-3032
    • Fang, H.1    Liang, S.2    Hoogenboom, G.3    Teasdale, J.4    Cavigelli, M.5
  • 41
    • 85064130440 scopus 로고    scopus 로고
    • FAO. 2012. FAOSTAT. http://faostat.fao.org/.
    • (2012) FAOSTAT
  • 42
    • 84947329999 scopus 로고    scopus 로고
    • Contribution of Persistent Factors to Yield Gaps in High-Yield Irrigated Maize
    • Farmaha, B. S., D. B. Lobell, K. E. Boone, K. G. Cassman, H. S. Yang, and P. Grassini. 2016. “Contribution of Persistent Factors to Yield Gaps in High-Yield Irrigated Maize.” Field Crops Research 186: 124–132. doi:10.1016/j.fcr.2015.10.020.
    • (2016) Field Crops Research , vol.186 , pp. 124-132
    • Farmaha, B.S.1    Lobell, D.B.2    Boone, K.E.3    Cassman, K.G.4    Yang, H.S.5    Grassini, P.6
  • 43
    • 22744435294 scopus 로고    scopus 로고
    • Evaluation of MODIS and NOAA AVHRR Vegetation Indices with in Situ Measurements in a Semi-Arid Environment
    • Fensholt, R., and I. Sandholt. 2005. “Evaluation of MODIS and NOAA AVHRR Vegetation Indices with in Situ Measurements in a Semi-Arid Environment.” International Journal of Remote Sensing 26: 2561–2594. doi:10.1080/01431160500033724.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 2561-2594
    • Fensholt, R.1    Sandholt, I.2
  • 48
    • 0034482939 scopus 로고    scopus 로고
    • Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination
    • Gao, X., A. R. Huete, W. Ni, and T. Miura. 2000. “Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination.” Remote Sensing of Environment 74: 609–620. doi:10.1016/S0034-4257(00)00150-4.
    • (2000) Remote Sensing of Environment , vol.74 , pp. 609-620
    • Gao, X.1    Huete, A.R.2    Ni, W.3    Miura, T.4
  • 49
    • 84860837638 scopus 로고    scopus 로고
    • Remote Sensing Estimation of Crop Biophysical Characteristics at Various Scales. Pp 329-358
    • edited by A. Thenkabail, P. S. Lyon, and J. G. Huete, New York: CRC Press, Taylor & Francis Group
    • Gitelson, A. A. 2011. “Remote Sensing Estimation of Crop Biophysical Characteristics at Various Scales. Pp 329-358.” In Hyperspectral Remote Sensing of Vegetation, edited by A. Thenkabail, P. S. Lyon, and J. G. Huete, 782. New York: CRC Press, Taylor & Francis Group.
    • (2011) Hyperspectral Remote Sensing of Vegetation , pp. 782
    • Gitelson, A.A.1
  • 51
    • 85064131649 scopus 로고    scopus 로고
    • Overview of Variables Used Agrometeorological Crop Forecasting Tools
    • edited by D. Rijks, J. M. Terres, and P. Vossen, Italy: Space Research Institute, EC Joint Research Centre, European Commission
    • Gommes, R. 1998. “Overview of Variables Used Agrometeorological Crop Forecasting Tools. Pp 323-326.” In Agrometeorological Application for Regional Crop Monitoring and Production Assessment, edited by D. Rijks, J. M. Terres, and P. Vossen, 516. Italy: Space Research Institute, EC Joint Research Centre, European Commission.
    • (1998) Agrometeorological Application for Regional Crop Monitoring and Production Assessment , vol.516 , pp. 323-326
    • Gommes, R.1
  • 52
    • 84872359932 scopus 로고    scopus 로고
    • Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data
    • Gong, P., J. Wang, L. Yu, Y. C. Zhao, Y. Y. Zhao, L. Liang, Z. G. Niu, et al. 2013. “Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data.” International Journal of Remote Sensing 34 (7): 2607–2654. doi:10.1080/01431161.2012.748992.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.7 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.C.4    Zhao, Y.Y.5    Liang, L.6    Niu, Z.G.7
  • 53
    • 34247631013 scopus 로고    scopus 로고
    • A Review of Hyperspectral Remote Sensing and Its Application in Vegetation and Water Resource Studies
    • Govender, M., K. Chetty, and H. Bulcock. 2007. “A Review of Hyperspectral Remote Sensing and Its Application in Vegetation and Water Resource Studies.” Water SA 33: 145–151.
    • (2007) Water SA , vol.33 , pp. 145-151
    • Govender, M.1    Chetty, K.2    Bulcock, H.3
  • 54
    • 0027788571 scopus 로고
    • NDVI—Crop Monitoring and Early Yield Assessment of Burkina Faso
    • Groten, S. 1993. “NDVI—Crop Monitoring and Early Yield Assessment of Burkina Faso.” International Journal of Remote Sensing 14: 1495–1515. doi:10.1080/01431169308953983.
    • (1993) International Journal of Remote Sensing , vol.14 , pp. 1495-1515
    • Groten, S.1
  • 55
    • 84937947483 scopus 로고    scopus 로고
    • The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation
    • Guanter, L., H. Kaufmann, K. Segl, S. Foerster, C. Rogass, S. Chabrillat, T. Kuester et al. 2015. “The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation.” Remote Sensing 7 (7): 8830–8857. doi:10.3390/rs70708830.
    • (2015) Remote Sensing , vol.7 , Issue.7 , pp. 8830-8857
    • Guanter, L.1    Kaufmann, H.2    Segl, K.3    Foerster, S.4    Rogass, C.5    Chabrillat, S.6    Kuester, T.7
  • 57
    • 46349102245 scopus 로고    scopus 로고
    • Assessment of Remotely Sensed and Statistical Inventories of African Agricultural Fields
    • Hannerz, F., and A. Lotsch. 2008. “Assessment of Remotely Sensed and Statistical Inventories of African Agricultural Fields.” International Journal of Remote Sensing 29: 3787–3804. doi:10.1080/01431160801891762.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 3787-3804
    • Hannerz, F.1    Lotsch, A.2
  • 58
    • 0030292154 scopus 로고    scopus 로고
    • Using NOAA AVHRR Data to Estimate Maize Production in the United States Corn Belt
    • Hayes, M., and W. Decker. 1996. “Using NOAA AVHRR Data to Estimate Maize Production in the United States Corn Belt.” International Journal of Remote Sensing 17: 3189–3200. doi:10.1080/01431169608949138.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 3189-3200
    • Hayes, M.1    Decker, W.2
  • 59
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices
    • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices.” Remote Sensing of Environment 83: 195–213. doi:10.1016/S0034-4257(02)00096-2.
    • (2002) Remote Sensing of Environment , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 60
    • 75349103549 scopus 로고    scopus 로고
    • A Comparison of Regression Tree Ensembles: Predicting Sirex Noctilio Induced Water Stress in Pinus Patula Forests of KwaZulu-Natal, South Africa
    • Ismail, R., and O. Mutanga. 2010. “A Comparison of Regression Tree Ensembles: Predicting Sirex Noctilio Induced Water Stress in Pinus Patula Forests of KwaZulu-Natal, South Africa.” International Journal of Applied Earth Observation and Geoinformation 12: S45–S51. doi:10.1016/j.jag.2009.09.004.
    • (2010) International Journal of Applied Earth Observation and Geoinformation , vol.12 , pp. S45-S51
    • Ismail, R.1    Mutanga, O.2
  • 61
    • 0020971731 scopus 로고
    • Discrimination of Growth and Water Stress in Wheat by Various Vegetation Indices through Clear and Turbid Atmospheres
    • Jackson, R., P. Slater, and P. Pinter. 1983. “Discrimination of Growth and Water Stress in Wheat by Various Vegetation Indices through Clear and Turbid Atmospheres.” Remote Sensing of Environment 13: 187–208. doi:10.1016/0034-4257(83)90039-1.
    • (1983) Remote Sensing of Environment , vol.13 , pp. 187-208
    • Jackson, R.1    Slater, P.2    Pinter, P.3
  • 62
    • 84891776980 scopus 로고    scopus 로고
    • The Value of Accurate Crop Production Forecasts
    • October 2010, 13. Michigan: Department of Agricultural, Food and Resources Economics, Michigan State University, East Lansing
    • Jayne, T. S., and S. Rashid. 2010. The Value of Accurate Crop Production Forecasts. MSU International Development Working Paper 108. October 2010, 13. Michigan: Department of Agricultural, Food and Resources Economics, Michigan State University, East Lansing.
    • (2010) MSU International Development Working Paper 108
    • Jayne, T.S.1    Rashid, S.2
  • 64
    • 84888050432 scopus 로고    scopus 로고
    • An Assessment of Pre-And Within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States
    • Johnson, D. M. 2014. “An Assessment of Pre-And Within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States.” Remote Sensing of Environment 141: 116–128. doi:10.1016/j.rse.2013.10.027.
    • (2014) Remote Sensing of Environment , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 65
    • 0034769866 scopus 로고    scopus 로고
    • Approaches to Modular Model Development
    • Jones, J., B. Keating, and C. Porter. 2001. “Approaches to Modular Model Development.” Agricultural Systems 70: 421–443. doi:10.1016/S0308-521X(01)00054-3.
    • (2001) Agricultural Systems , vol.70 , pp. 421-443
    • Jones, J.1    Keating, B.2    Porter, C.3
  • 67
    • 0025656868 scopus 로고
    • Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas
    • Kogan, F. 1990. “Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas.” International Journal of Remote Sensing 11: 1405–1419. doi:10.1080/01431169008955102.
    • (1990) International Journal of Remote Sensing , vol.11 , pp. 1405-1419
    • Kogan, F.1
  • 69
    • 0013340647 scopus 로고    scopus 로고
    • PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops
    • Lamb, D., and R. Brown. 2001. “PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops.” Journal of Agricultural Engineering Research 78: 117–125. doi:10.1006/jaer.2000.0630.
    • (2001) Journal of Agricultural Engineering Research , vol.78 , pp. 117-125
    • Lamb, D.1    Brown, R.2
  • 70
    • 31344453556 scopus 로고    scopus 로고
    • Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (Random forest)
    • Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. “Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (Random forest).” Remote Sensing of Environment 100: 356–362. doi:10.1016/j.rse.2005.10.014.
    • (2006) Remote Sensing of Environment , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 71
    • 84907478462 scopus 로고    scopus 로고
    • How Reliable Is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes?
    • Leroux, L., A. Jolivot, A. Bégué, D. L. Seen, and B. Zoungrana. 2014. “How Reliable Is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes?.” Remote Sensing 6: 8541–8564. doi:10.3390/rs6098541.
    • (2014) Remote Sensing , vol.6 , pp. 8541-8564
    • Leroux, L.1    Jolivot, A.2    Bégué, A.3    Seen, D.L.4    Zoungrana, B.5
  • 72
    • 0032505170 scopus 로고    scopus 로고
    • Estimating Maize Production in Kenya Using NDVI: Some Statistical Considerations
    • Lewis, J., J. Rowland, and A. Nadeau. 1998. “Estimating Maize Production in Kenya Using NDVI: Some Statistical Considerations.” International Journal of Remote Sensing 19: 2609–2617. doi:10.1080/014311698214677.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 2609-2617
    • Lewis, J.1    Rowland, J.2    Nadeau, A.3
  • 73
    • 84905647442 scopus 로고    scopus 로고
    • Assimilating Remote Sensing Information into a Coupled Hydrology-Crop Growth Model to Estimate Regional Maize Yield in Arid Regions
    • Li, Y., Q. Zhou, J. Zhou, G. Zhang, C. Chen, and J. Wang. 2014. “Assimilating Remote Sensing Information into a Coupled Hydrology-Crop Growth Model to Estimate Regional Maize Yield in Arid Regions.” Ecological Modelling 291: 15–27. doi:10.1016/j.ecolmodel.2014.07.013.
    • (2014) Ecological Modelling , vol.291 , pp. 15-27
    • Li, Y.1    Zhou, Q.2    Zhou, J.3    Zhang, G.4    Chen, C.5    Wang, J.6
  • 75
    • 77949490918 scopus 로고    scopus 로고
    • Estimating Crop Stresses, Aboveground Dry Biomass and Yield of Corn Using Multi-Temporal Optical Data Combined with a Radiation Use Efficiency Model
    • Liu, J., E. Pattey, J. R. Miller, H. McNairn, A. Smith, and B. Hu. 2010. “Estimating Crop Stresses, Aboveground Dry Biomass and Yield of Corn Using Multi-Temporal Optical Data Combined with a Radiation Use Efficiency Model.” Remote Sensing of Environment 114: 1167–1177. doi:10.1016/j. rse.2010.01.004.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1167-1177
    • Liu, J.1    Pattey, E.2    Miller, J.R.3    Mcairn, H.4    Smith, A.5    Hu, B.6
  • 77
    • 84875549888 scopus 로고    scopus 로고
    • The Use of Satellite Data for Crop Yield Gap Analysis
    • Lobell, D. B. 2013. “The Use of Satellite Data for Crop Yield Gap Analysis.” Field Crops Research 143: 56–64. doi:10.1016/j.fcr.2012.08.008.
    • (2013) Field Crops Research , vol.143 , pp. 56-64
    • Lobell, D.B.1
  • 78
    • 0037307653 scopus 로고    scopus 로고
    • Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties
    • Lobell, D. B., G. P. Asner, J. I. Ortiz-Monasterio, and T. L. Benning. 2003. “Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties.” Agriculture, Ecosystems & Environment 94: 205–220. doi:10.1016/S0167-8809(02)00021-X.
    • (2003) Agriculture, Ecosystems & Environment , vol.94 , pp. 205-220
    • Lobell, D.B.1    Asner, G.P.2    Ortiz-Monasterio, J.I.3    Benning, T.L.4
  • 79
    • 13544271825 scopus 로고    scopus 로고
    • Combining Field Surveys, Remote Sensing, and Regression Trees to Understand Yield Variations in an Irrigated Wheat Landscape
    • Lobell, D. B., J. I. Ortiz-Monasterio, G. P. Asner, R. L. Naylor, and W. P. Falcon. 2005. “Combining Field Surveys, Remote Sensing, and Regression Trees to Understand Yield Variations in an Irrigated Wheat Landscape.” Agronomy Journal 97: 241–249.
    • (2005) Agronomy Journal , vol.97 , pp. 241-249
    • Lobell, D.B.1    Ortiz-Monasterio, J.I.2    Asner, G.P.3    Naylor, R.L.4    Falcon, W.P.5
  • 82
    • 0024190007 scopus 로고
    • Use of Remotely-Sensed Information in Agricultural Crop Growth Models
    • Maas, S. J. 1988. “Use of Remotely-Sensed Information in Agricultural Crop Growth Models.” Ecology Modern 41: 247–268. doi:10.1016/0304-3800(88)90031-2.
    • (1988) Ecology Modern , vol.41 , pp. 247-268
    • Maas, S.J.1
  • 83
    • 0025198881 scopus 로고
    • A Ratio Vegetation Index Adjusted for Soil Brightness
    • Major, D., F. Baret, and G. Guyot. 1990. “A Ratio Vegetation Index Adjusted for Soil Brightness.” International Journal of Remote Sensing 11: 727–740. doi:10.1080/01431169008955053.
    • (1990) International Journal of Remote Sensing , vol.11 , pp. 727-740
    • Major, D.1    Baret, F.2    Guyot, G.3
  • 84
    • 84907427970 scopus 로고    scopus 로고
    • Mapping Canopy Gaps in an Indigenous Subtropical Coastal Forest Using High-Resolution WorldView-2 Data
    • Malahlela, O., M. A. Cho, and O. Mutanga. 2014. “Mapping Canopy Gaps in an Indigenous Subtropical Coastal Forest Using High-Resolution WorldView-2 Data.” International Journal of Remote Sensing 35: 6397–6417. doi:10.1080/01431161.2014.954061.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 6397-6417
    • Malahlela, O.1    Cho, M.A.2    Mutanga, O.3
  • 85
    • 0027007559 scopus 로고
    • Use of NOAA-AVHRR NDVI Data for Environmental Monitoring and Crop Forecasting in the Sahel. Preliminary Results
    • Maselli, F., C. Conese, L. Petkov, and M.-A. Gilabert. 1992. “Use of NOAA-AVHRR NDVI Data for Environmental Monitoring and Crop Forecasting in the Sahel. Preliminary Results.” International Journal of Remote Sensing 13: 2743–2749. doi:10.1080/01431169208904076.
    • (1992) International Journal of Remote Sensing , vol.13 , pp. 2743-2749
    • Maselli, F.1    Conese, C.2    Petkov, L.3    Gilabert, M.-A.4
  • 86
    • 0034526769 scopus 로고    scopus 로고
    • Processing of GAC NDVI Data for Yield Forecasting in the Sahelian Region
    • Maselli, F., S. Romanelli, L. Bottai, and G. Maracchi. 2000. “Processing of GAC NDVI Data for Yield Forecasting in the Sahelian Region.” International Journal of Remote Sensing 21: 3509–3523. doi:10.1080/014311600750037525.
    • (2000) International Journal of Remote Sensing , vol.21 , pp. 3509-3523
    • Maselli, F.1    Romanelli, S.2    Bottai, L.3    Maracchi, G.4
  • 88
    • 14744279612 scopus 로고    scopus 로고
    • Early Maize Yield Forecasting in the Four Agro-Ecological Regions of Swaziland Using NDVI Data Derived from NOAA’s-AVHRR
    • Mkhabela, M. S., M. S. Mkhabela, and N. N. Mashinini. 2005. “Early Maize Yield Forecasting in the Four Agro-Ecological Regions of Swaziland Using NDVI Data Derived from NOAA’s-AVHRR.” Agricultural and Forest Meteorology 129: 1–9. doi:10.1016/j.agrformet.2004.12.006.
    • (2005) Agricultural and Forest Meteorology , vol.129 , pp. 1-9
    • Mkhabela, M.S.1    Mkhabela, M.S.2    Mashinini, N.N.3
  • 89
    • 5444267906 scopus 로고    scopus 로고
    • Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation
    • Mutanga, O., and A. K. Skidmore. 2004. “Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation.” International Journal of Remote Sensing 25: 3999–4014. doi:10.1080/01431160310001654923.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 3999-4014
    • Mutanga, O.1    Skidmore, A.K.2
  • 90
    • 0037322015 scopus 로고    scopus 로고
    • Discriminating Tropical Grass (Cenchrus Ciliaris) Canopies Grown under Different Nitrogen Treatments Using Spectroradiometry
    • Mutanga, O., A. K. Skidmore, and S. Van Wieren. 2003. “Discriminating Tropical Grass (Cenchrus Ciliaris) Canopies Grown under Different Nitrogen Treatments Using Spectroradiometry.” ISPRS Journal of Photogrammetry and Remote Sensing 57: 263–272. doi:10.1016/S0924-2716(02)00158-2.
    • (2003) ISPRS Journal of Photogrammetry and Remote Sensing , vol.57 , pp. 263-272
    • Mutanga, O.1    Skidmore, A.K.2    van Wieren, S.3
  • 91
    • 84920656982 scopus 로고    scopus 로고
    • Evaluating the Robustness of Models Developed from Field Spectral Data in Predicting African Grass Foliar Nitrogen Concentration Using WorldView-2 Image as an Independent Test Dataset
    • Mutanga, O., E. Adam, C. Adjorlolo, and E. M. Abdel-Rahman. 2015. “Evaluating the Robustness of Models Developed from Field Spectral Data in Predicting African Grass Foliar Nitrogen Concentration Using WorldView-2 Image as an Independent Test Dataset.” International Journal of Applied Earth Observation and Geoinformation 34: 178–187. doi:10.1016/j. jag.2014.08.008.
    • (2015) International Journal of Applied Earth Observation and Geoinformation , vol.34 , pp. 178-187
    • Mutanga, O.1    Adam, E.2    Adjorlolo, C.3    Abdel-Rahman, E.M.4
  • 92
    • 84978034028 scopus 로고    scopus 로고
    • Progress in Remote Sensing: Vegetation Monitoring in South Africa
    • Mutanga, O., T. Dube, and F. Ahmed. 2016. “Progress in Remote Sensing: Vegetation Monitoring in South Africa.” South African Geographical Journal 98: 461–471. doi:10.1080/03736245.2016.1208586.
    • (2016) South African Geographical Journal , vol.98 , pp. 461-471
    • Mutanga, O.1    Dube, T.2    Ahmed, F.3
  • 93
    • 85064123706 scopus 로고    scopus 로고
    • Ameliorating the Spatial Resolution of High Resolution Satellite Data for Use in Urban Areas
    • edited by A. Kerk, M. Rumor, S. Zlatanova, and E. M. Fendel, CRS Press
    • Nikolakopoulos, K. G., and P. I. Tsombos. 2009. “Ameliorating the Spatial Resolution of High Resolution Satellite Data for Use in Urban Areas.” In Urban and Regional Data Management, edited by A. Kerk, M. Rumor, S. Zlatanova, and E. M. Fendel, 399–408, CRS Press.
    • (2009) Urban and Regional Data Management , pp. 399-408
    • Nikolakopoulos, K.G.1    Tsombos, P.I.2
  • 94
    • 84870532133 scopus 로고    scopus 로고
    • Using WorldView-2 Bands and Indices to Predict Bronze Bug (Thaumastocoris Peregrinus) Damage in Plantation Forests
    • Oumar, Z., and O. Mutanga. 2013. “Using WorldView-2 Bands and Indices to Predict Bronze Bug (Thaumastocoris Peregrinus) Damage in Plantation Forests.” International Journal of Remote Sensing 34: 2236–2249. doi:10.1080/01431161.2012.743694.
    • (2013) International Journal of Remote Sensing , vol.34 , pp. 2236-2249
    • Oumar, Z.1    Mutanga, O.2
  • 95
    • 84888110427 scopus 로고    scopus 로고
    • Integrating Environmental Variables and WorldView-2 Image Data to Improve the Prediction and Mapping of Thaumastocoris Peregrinus (Bronze Bug) Damage in Plantation Forests
    • Oumar, Z., and O. Mutanga. 2014. “Integrating Environmental Variables and WorldView-2 Image Data to Improve the Prediction and Mapping of Thaumastocoris Peregrinus (Bronze Bug) Damage in Plantation Forests.” ISPRS Journal of Photogrammetry and Remote Sensing 87: 39– 46. doi:10.1016/j.isprsjprs.2013.10.010.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.87 , pp. 39-46
    • Oumar, Z.1    Mutanga, O.2
  • 97
    • 84892943837 scopus 로고    scopus 로고
    • Multispectral Vegetation Indices in Remote Sensing: An Overview
    • Petropoulos, G. P., and C. Kalaitzidisz. 2012. “Multispectral Vegetation Indices in Remote Sensing: An Overview.” Ecological Modelling 2: 15–39.
    • (2012) Ecological Modelling , vol.2 , pp. 15-39
    • Petropoulos, G.P.1    Kalaitzidisz, C.2
  • 98
    • 0019727995 scopus 로고
    • Multidate Spectral Reflectance as Predictors of Yield in Water Stressed Wheat and Barley
    • Pinter, P. Jr, R. Jackson, S. Idso, and R. Reginato. 1981. “Multidate Spectral Reflectance as Predictors of Yield in Water Stressed Wheat and Barley.” International Journal of Remote Sensing 2: 43–48. doi:10.1080/01431168108948339.
    • (1981) International Journal of Remote Sensing , vol.2 , pp. 43-48
    • Pinter, P.1    Jackson, R.2    Idso, S.3    Reginato, R.4
  • 100
    • 0028667905 scopus 로고
    • How Unique are Spectral Signatures?
    • Price, J. C. 1994. “How Unique are Spectral Signatures?” Remote Sensing of Environment 49: 181– 186. doi:10.1016/0034-4257(94)90013-2.
    • (1994) Remote Sensing of Environment , vol.49 , pp. 181-186
    • Price, J.C.1
  • 101
    • 0025661557 scopus 로고
    • High Temporal Frequency Remote Sensing Of Primary Production Using NOAA AVHRR
    • edited by M. D. Steven, and J. A. Clark, London, UK: Butterworths
    • Prince, S. D. 1990. "High Temporal Frequency Remote Sensing Of Primary Production Using NOAA AVHRR". In Applications of Remote Sensing in Agriculture, edited by M. D. Steven, and J. A. Clark, 169–183. London, UK: Butterworths. doi:10.1016/B978-0-408-04767-8.50016-5
    • (1990) Applications of Remote Sensing in Agriculture , pp. 169-183
    • Prince, S.D.1
  • 103
    • 0027334401 scopus 로고
    • The Use of Multi-Temporal NDVI Measurements from AVHRR Data for Crop Yield Estimation and Prediction
    • Quarmby, N., M. Milnes, T. Hindle, and N. Silleos. 1993. “The Use of Multi-Temporal NDVI Measurements from AVHRR Data for Crop Yield Estimation and Prediction.” International Journal of Remote Sensing 14: 199–210. doi:10.1080/01431169308904332.
    • (1993) International Journal of Remote Sensing , vol.14 , pp. 199-210
    • Quarmby, N.1    Milnes, M.2    Hindle, T.3    Silleos, N.4
  • 104
    • 0027007342 scopus 로고
    • Assessment of Millet Yields and Production in Northern Burkina Faso Using Integrated NDVI from the AVHRR
    • Rasmussen, M. S. 1992. “Assessment of Millet Yields and Production in Northern Burkina Faso Using Integrated NDVI from the AVHRR.” International Journal of Remote Sensing 13: 3431–3442. doi:10.1080/01431169208904132.
    • (1992) International Journal of Remote Sensing , vol.13 , pp. 3431-3442
    • Rasmussen, M.S.1
  • 105
    • 84877678838 scopus 로고    scopus 로고
    • Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection
    • Rembold, F., C. Atzberger, I. Savin, and O. Rojas. 2013. “Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection.” Remote Sensing 5: 1704–1733. doi:10.3390/rs5041704.
    • (2013) Remote Sensing , vol.5 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Savin, I.3    Rojas, O.4
  • 106
    • 84872737012 scopus 로고    scopus 로고
    • Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change
    • Roberts, M. J., W. Schlenker, and J. Eyer. 2012. “Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change.” American Journal of Agricultural Economics 95 (2): 236–243. doi:10.1093/ajae/aas047.
    • (2012) American Journal of Agricultural Economics , vol.95 , Issue.2 , pp. 236-243
    • Roberts, M.J.1    Schlenker, W.2    Eyer, J.3
  • 107
    • 34548309577 scopus 로고    scopus 로고
    • Operational Maize Yield Model Development and Validation Based on Remote Sensing and Agro-Meteorological Data in Kenya
    • Rojas, O. 2007. “Operational Maize Yield Model Development and Validation Based on Remote Sensing and Agro-Meteorological Data in Kenya.” International Journal of Remote Sensing 28: 3775–3793. doi:10.1080/01431160601075608.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 3775-3793
    • Rojas, O.1
  • 108
    • 0002872223 scopus 로고
    • Monitoring Vegetation Systems in the Great Plains with ERTS
    • Rouse, J. W. Jr, R. Haas, J. Schell, and D. Deering. 1974. “Monitoring Vegetation Systems in the Great Plains with ERTS.” NASA Special Publication 351: 309.
    • (1974) NASA Special Publication , vol.351 , pp. 309
    • Rouse, J.W.1    Haas, R.2    Schell, J.3    Deering, D.4
  • 109
    • 0025571553 scopus 로고
    • Spectral Response of Wheat and Its Relationship to Agronomic Variables in the Tropical Region
    • Rudorff, B., and G. Batista. 1990. “Spectral Response of Wheat and Its Relationship to Agronomic Variables in the Tropical Region.” Remote Sensing of Environment 31: 53–63. doi:10.1016/0034-4257(90)90076-X.
    • (1990) Remote Sensing of Environment , vol.31 , pp. 53-63
    • Rudorff, B.1    Batista, G.2
  • 111
    • 84872872459 scopus 로고    scopus 로고
    • MODIS-based Corn Grain Yield Estimation Model Incorporating Crop Phenology Information
    • Sakamoto, T., A. A. Gitelson, and T. J. Arkebauer. 2013. “MODIS-based Corn Grain Yield Estimation Model Incorporating Crop Phenology Information.” Remote Sensing of Environment 13: 215–231. doi:10.1016/j.rse.2012.12.017.
    • (2013) Remote Sensing of Environment , vol.13 , pp. 215-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 113
    • 85064118024 scopus 로고    scopus 로고
    • Nonlinear Effects of Weather on Crop Yields: Implications for Climate Change
    • Schlenker, W., and P. Roberts. 2006b. “Nonlinear Effects of Weather on Crop Yields: Implications for Climate Change.” Review of Agricultural Economics 1–40.
    • (2006) Review of Agricultural Economics , pp. 1-40
    • Schlenker, W.1    Roberts, P.2
  • 115
    • 0022209460 scopus 로고
    • Canopy Reflectance, Photosynthesis and Transpiration
    • Sellers, P. J. 1985. “Canopy Reflectance, Photosynthesis and Transpiration.” International Journal of Remote Sensing 6: 1335–1372. doi:10.1080/01431168508948283.
    • (1985) International Journal of Remote Sensing , vol.6 , pp. 1335-1372
    • Sellers, P.J.1
  • 118
    • 0000742297 scopus 로고    scopus 로고
    • Implementing Precision Agriculture in the 21st Century
    • Stafford, J. V. 2000. “Implementing Precision Agriculture in the 21st Century.” Journal of Agricultural Engineering Research 76: 267–275. doi:10.1006/jaer.2000.0577.
    • (2000) Journal of Agricultural Engineering Research , vol.76 , pp. 267-275
    • Stafford, J.V.1
  • 119
    • 85064128998 scopus 로고    scopus 로고
    • Spectral Indices: In-Season Dry Mass and Yield Relationship of Flue-Cured Tobacco under Different Planting Dates and Fertiliser Levels
    • Svotwa, E., J. Masuka, B. Maasdorp, and A. Murwira. 2013. “Spectral Indices: In-Season Dry Mass and Yield Relationship of Flue-Cured Tobacco under Different Planting Dates and Fertiliser Levels.” ISRN Agronomy, 2013. 2013: 1–10. doi:10.1155/2013/816767.
    • (2013) ISRN Agronomy , vol.2013 , Issue.20 , pp. 1-10
    • Svotwa, E.1    Masuka, J.2    Maasdorp, B.3    Murwira, A.4
  • 120
    • 84951041539 scopus 로고    scopus 로고
    • Rice Crop Monitoring with Unmanned Helicopter Remote Sensing Images
    • edited by L. Fatoyinbo, InTech978-953-51-0313-4
    • Swain, K. C., and Q. U. Zaman. 2012. “Rice Crop Monitoring with Unmanned Helicopter Remote Sensing Images.” In Remote Sensing of Biomass-Principles and Applications, edited by L. Fatoyinbo, 322. InTech. ISBN: 978-953-51-0313-4. http://www.intechopen.com/books/remote-sensing-of-biomassprinciples-and-applications/rice-crop-monitoring-with-unmanned-helicop ter-remote-sensing-images
    • (2012) Remote Sensing of Biomass-Principles and Applications , vol.322
    • Swain, K.C.1    Zaman, Q.U.2
  • 121
    • 84950123056 scopus 로고    scopus 로고
    • Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling
    • Sweeney, S., T. Ruseva, L. Estes, and T. Evans. 2015. “Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling.” Remote Sensing 7: 15295–15317. doi:10.3390/rs71115295.
    • (2015) Remote Sensing , vol.7 , pp. 15295-15317
    • Sweeney, S.1    Ruseva, T.2    Estes, L.3    Evans, T.4
  • 124
    • 2942724627 scopus 로고    scopus 로고
    • Accuracy Assessments of Hyperspectral Waveband Performance for Vegetation Analysis Applications
    • Thenkabail, P. S., E. A. Enclona, M. S. Ashton, and B. Van Der Meer. 2004. “Accuracy Assessments of Hyperspectral Waveband Performance for Vegetation Analysis Applications.” Remote Sensing of Environment 91: 354–376. doi:10.1016/j.rse.2004.03.013.
    • (2004) Remote Sensing of Environment , vol.91 , pp. 354-376
    • Thenkabail, P.S.1    Enclona, E.A.2    Ashton, M.S.3    van Der Meer, B.4
  • 126
    • 0033970477 scopus 로고    scopus 로고
    • Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics
    • Thenkabail, P. S., R. B. Smith, and E. De Pauw. 2000. “Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics.” Remote Sensing of Environment 71: 158– 182. doi:10.1016/S0034-4257(99)00067-X.
    • (2000) Remote Sensing of Environment , vol.71 , pp. 158-182
    • Thenkabail, P.S.1    Smith, R.B.2    de Pauw, E.3
  • 127
    • 0001604023 scopus 로고
    • Weather and Technology in the Production of Corn in the US Corn Belt
    • Thompson, L. M. 1969. “Weather and Technology in the Production of Corn in the US Corn Belt.” Agronomy Journal 61: 453–456. doi:10.2134/agronj1969.00021962006100030037x.
    • (1969) Agronomy Journal , vol.61 , pp. 453-456
    • Thompson, L.M.1
  • 128
    • 0040699588 scopus 로고
    • Weather and Technology in the Production of Soybeans in the Central United States
    • Thompson, L. M. 1970. “Weather and Technology in the Production of Soybeans in the Central United States.” Agronomy Journal 62: 232–236. doi:10.2134/agronj1970.00021962006200020016x.
    • (1970) Agronomy Journal , vol.62 , pp. 232-236
    • Thompson, L.M.1
  • 129
    • 0003265940 scopus 로고
    • Effects of Changes in Climate and Weather Variability on the Yields of Corn and Soybeans
    • Thompson, L. M. 1988. “Effects of Changes in Climate and Weather Variability on the Yields of Corn and Soybeans.” Journal of Production Agriculture 1: 20–27. doi:10.2134/jpa1988.0020.
    • (1988) Journal of Production Agriculture , vol.1 , pp. 20-27
    • Thompson, L.M.1
  • 130
    • 0018465733 scopus 로고
    • Red and Photographic Infrared Linear Combinations for Monitoring Vegetation
    • Tucker, C. J. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” Remote Sensing of Environment 8: 127–150. doi:10.1016/0034-4257(79)90013-0.
    • (1979) Remote Sensing of Environment , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 131
    • 0019213778 scopus 로고
    • Remote Sensing of Leaf Water Content in the near Infrared
    • Tucker, C. J. 1980. “Remote Sensing of Leaf Water Content in the near Infrared.” Remote Sensing of Environment 10: 23–32. doi:10.1016/0034-4257(80)90096-6.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 23-32
    • Tucker, C.J.1
  • 133
    • 85064129319 scopus 로고    scopus 로고
    • Uganda National Household Survey, 2005/2006
    • Kampala, Uganda: Uganda Bureau of Statistics
    • Uganda Bureau of Statistics (UBOS). 2007. “Uganda National Household Survey, 2005/2006.” Report on the Agricultural Module. 225. Kampala, Uganda: Uganda Bureau of Statistics.
    • (2007) Report on the Agricultural Module , pp. 225
  • 134
    • 0032010538 scopus 로고    scopus 로고
    • Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data
    • Unganai, L. S., and F. N. Kogan. 1998. “Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data.” Remote Sensing of Environment 63: 219–232. doi:10.1016/S0034-4257 (97)00132-6.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 219-232
    • Unganai, L.S.1    Kogan, F.N.2
  • 135
    • 25144455365 scopus 로고    scopus 로고
    • Tropical Mangrove Species Discrimination Using Hyperspectral Data: A Laboratory Study
    • Vaiphasa, C., S. Ongsomwang, T. Vaiphasa, and A. K. Skidmore. 2005. “Tropical Mangrove Species Discrimination Using Hyperspectral Data: A Laboratory Study.” Estuarine, Coastal and Shelf Science 65: 371–379. doi:10.1016/j.ecss.2005.06.014.
    • (2005) Estuarine, Coastal and Shelf Science , vol.65 , pp. 371-379
    • Vaiphasa, C.1    Ongsomwang, S.2    Vaiphasa, T.3    Skidmore, A.K.4
  • 138
    • 84876925692 scopus 로고    scopus 로고
    • Use of Soil Moisture Data for Refined GreenSeeker Sensor Based Nitrogen Recommendations in Winter Wheat (Triticum Aestivum L.)
    • Walsh, O. S., A. Klatt, J. Solie, C. Godsey, and W. Raun. 2013. “Use of Soil Moisture Data for Refined GreenSeeker Sensor Based Nitrogen Recommendations in Winter Wheat (Triticum Aestivum L.).” Precision Agriculture 14: 343–356. doi:10.1007/s11119-012-9299-9.
    • (2013) Precision Agriculture , vol.14 , pp. 343-356
    • Walsh, O.S.1    Klatt, A.2    Solie, J.3    Godsey, C.4    Raun, W.5
  • 140
    • 0000275093 scopus 로고
    • Use of Spectral Vegetation Indices to Infer Leaf Area, Evapotranspiration and Yield: I. Rationale
    • Wiegand, C. L., and A. J. Richardson. 1990. “Use of Spectral Vegetation Indices to Infer Leaf Area, Evapotranspiration and Yield: I. Rationale.” Agronomy Journal 82: 623–629. doi:10.2134/agronj1990.00021962008200030037x.
    • (1990) Agronomy Journal , vol.82 , pp. 623-629
    • Wiegand, C.L.1    Richardson, A.J.2
  • 144
    • 77951817794 scopus 로고    scopus 로고
    • Nondestructive Estimation of Canopy Chlorophyll Content Using Hyperion and Landsat/TM Images
    • Wu, C., L. Wang, Z. Niu, S. Gao, and M. Wu. 2010. “Nondestructive Estimation of Canopy Chlorophyll Content Using Hyperion and Landsat/TM Images.” International Journal of Remote Sensing 31: 2159–2167. doi:10.1080/01431161003614382.
    • (2010) International Journal of Remote Sensing , vol.31 , pp. 2159-2167
    • Wu, C.1    Wang, L.2    Niu, Z.3    Gao, S.4    Wu, M.5
  • 145
    • 84865430209 scopus 로고    scopus 로고
    • Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat
    • Wulder, M. A., J. G. Masek, W. B. Cohen, T. R. Loveland, and C. E. Woodcock. 2012. “Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat.” Remote Sensing of Environment 122: 2–10. doi:10.1016/j.rse.2012.01.010.
    • (2012) Remote Sensing of Environment , vol.122 , pp. 2-10
    • Wulder, M.A.1    Masek, J.G.2    Cohen, W.B.3    Loveland, T.R.4    Woodcock, C.E.5
  • 146
    • 34250740912 scopus 로고    scopus 로고
    • Generating Plausible Crop Distribution Maps for sub-Saharan Africa Using a Spatial Allocation Model
    • You, L., S. R. Wood, and U. Wood-Sichra. 2007. “Generating Plausible Crop Distribution Maps for sub-Saharan Africa Using a Spatial Allocation Model.” Information Development 23 (2–3): 151– 159. doi:10.1177/0266666907078670.
    • (2007) Information Development , vol.23 , Issue.2-3 , pp. 151-159
    • You, L.1    Wood, S.R.2    Wood-Sichra, U.3
  • 147
    • 84905026799 scopus 로고    scopus 로고
    • Towards a Common Validation Sample Set for Global Land-Cover Mapping
    • Zhao, Y., P. Gong, L. Yu, L. Hu, X. Li, C. Li, H. Zhang, et al. 2014. “Towards a Common Validation Sample Set for Global Land-Cover Mapping.” International Journal of Remote Sensing 35 (13): 4795–4814. doi:10.1080/01431161.2014.930202.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.13 , pp. 4795-4814
    • Zhao, Y.1    Gong, P.2    Yu, L.3    Hu, L.4    Li, X.5    Li, C.6    Zhang, H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.