메뉴 건너뛰기




Volumn 10, Issue 7, 2018, Pages

Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features

Author keywords

Biomass; Drone; Hyperspectral; Machine learning; Nitrogen; Photogrammetry; Precision agriculture; Random forest; Regression; UAV

Indexed keywords

BIOMASS; CAMERAS; CORRELATION METHODS; CROPS; DECISION TREES; DRONES; ESTIMATION; FABRY-PEROT INTERFEROMETERS; LEARNING SYSTEMS; MEAN SQUARE ERROR; PHOTOGRAMMETRY; PRECISION AGRICULTURE; REMOTE SENSING; UNMANNED AERIAL VEHICLES (UAV);

EID: 85050487335     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10071082     Document Type: Article
Times cited : (131)

References (81)
  • 1
    • 85026443520 scopus 로고    scopus 로고
    • Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives
    • Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8
    • (2017) Front. Plant Sci , pp. 8
    • Yang, G.1    Liu, J.2    Zhao, C.3    Li, Z.4    Huang, Y.5    Yu, H.6    Xu, B.7    Yang, X.8    Zhu, D.9    Zhang, X.10
  • 3
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358-371
    • (2013) Biosyst. Eng , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 7
    • 84887537551 scopus 로고    scopus 로고
    • Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture
    • Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006-5039
    • (2013) Remote Sens , vol.5 , pp. 5006-5039
    • Honkavaara, E.1    Saari, H.2    Kaivosoja, J.3    Pölönen, I.4    Hakala, T.5    Litkey, P.6    Mäkynen, J.7    Pesonen, L.8
  • 10
    • 84971430929 scopus 로고    scopus 로고
    • Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV)
    • Honkavaara, E.; Eskelinen, M.A.; Pölönen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440-5454
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 5440-5454
    • Honkavaara, E.1    Eskelinen, M.A.2    Pölönen, I.3    Saari, H.4    Ojanen, H.5    Mannila, R.6    Holmlund, C.7    Hakala, T.8    Litkey, P.9    Rosnell, T.10
  • 19
    • 85010676775 scopus 로고    scopus 로고
    • The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data
    • Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens. 2017, 9
    • (2017) Remote Sens , pp. 9
    • Jakob, S.1    Zimmermann, R.2    Gloaguen, R.3
  • 20
    • 85047571087 scopus 로고    scopus 로고
    • Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity
    • Tuominen, S.; Näsi, R.; Honkavaara, E.; Balazs, A.; Hakala, T.; Viljanen, N.; Pölönen, I.; Saari, H.; Ojanen, H. Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. Remote Sens. 2018, 10, 714
    • (2018) Remote Sens , vol.10 , pp. 714
    • Tuominen, S.1    Näsi, R.2    Honkavaara, E.3    Balazs, A.4    Hakala, T.5    Viljanen, N.6    Pölönen, I.7    Saari, H.8    Ojanen, H.9
  • 21
    • 84941263991 scopus 로고    scopus 로고
    • Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
    • Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245-259
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.108 , pp. 245-259
    • Aasen, H.1    Burkart, A.2    Bolten, A.3    Bareth, G.4
  • 23
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79-87
    • (2015) Int. J. Appl. Earth Obs. Geoinf , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8
  • 24
    • 85022320211 scopus 로고    scopus 로고
    • Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
    • Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708
    • (2017) Remote Sens , vol.9 , pp. 708
    • Yue, J.1    Yang, G.2    Li, C.3    Li, Z.4    Wang, Y.5    Feng, H.6    Xu, B.7
  • 25
    • 85048261649 scopus 로고    scopus 로고
    • A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone
    • Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70
    • (2018) Agriculture , vol.8 , pp. 70
    • Viljanen, N.1    Honkavaara, E.2    Näsi, R.3    Hakala, T.4    Niemeläinen, O.5    Kaivosoja, J.6
  • 27
    • 84893378068 scopus 로고    scopus 로고
    • Spatial variability detection of crop height in a single field by terrestrial laser scanning
    • Wageningen Academic Publishers: Wageningen, The Netherlands
    • Hoffmeister, D.;Waldhoff, G.; Curdt, C.; Tilly, N.; Bendig, J.; Bareth, G. Spatial variability detection of crop height in a single field by terrestrial laser scanning. In Precision Agriculture 13; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 267-274. ISBN 978-90-8686-778-3
    • (2013) Precision Agriculture 13 , pp. 267-274
    • Hoffmeister, D.1    Waldhoff, G.2    Curdt, C.3    Tilly, N.4    Bendig, J.5    Bareth, G.6
  • 28
    • 84896285330 scopus 로고    scopus 로고
    • Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice
    • Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J Appl. Remote Sens. 2014, 8, 083671
    • (2014) J Appl. Remote Sens , vol.8
    • Tilly, N.1    Hoffmeister, D.2    Cao, Q.3    Huang, S.4    Lenz-Wiedemann, V.5    Miao, Y.6    Bareth, G.7
  • 29
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: A review
    • Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693-712
    • (2012) Precis. Agric , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 30
    • 84892621633 scopus 로고    scopus 로고
    • UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability
    • 551-562
    • Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. Photogramm. Fernerkund. Geoinf. 2013, 551-562
    • (2013) Photogramm. Fernerkund. Geoinf
    • Bendig, J.1    Bolten, A.2    Bareth, G.3
  • 31
    • 84912124929 scopus 로고    scopus 로고
    • Estimating Biomass of Barley Using Crop SurfaceModels (CSMs) Derived from UAV-Based RGB Imaging
    • Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop SurfaceModels (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395-10412
    • (2014) Remote Sens , vol.6 , pp. 10395-10412
    • Bendig, J.1    Bolten, A.2    Bennertz, S.3    Broscheit, J.4    Eichfuss, S.5    Bareth, G.6
  • 32
    • 84961989773 scopus 로고    scopus 로고
    • Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
    • Li, W.; Niu, Z.; Chen, H.; Li, D.;Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637-648
    • (2016) Ecol. Indic , vol.67 , pp. 637-648
    • Li, W.1    Niu, Z.2    Chen, H.3    Li, D.4    Wu, M.5    Zhao, W.6
  • 33
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
    • Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722-738
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 722-738
    • Berni, J.A.J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 34
  • 35
    • 84937860942 scopus 로고    scopus 로고
    • Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images
    • Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026-4047
    • (2015) Remote Sens , vol.7 , pp. 4026-4047
    • Candiago, S.1    Remondino, F.2    De Giglio, M.3    Dubbini, M.4    Gattelli, M.5
  • 37
    • 84990202914 scopus 로고    scopus 로고
    • A Programmable Aerial Multispectral Camera System for in-Season Crop Biomass and Nitrogen Content Estimation
    • Geipel, J.; Link, J.;Wirwahn, J.A.; Claupein, W. A Programmable Aerial Multispectral Camera System for in-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6
    • (2016) Agriculture , pp. 6
    • Geipel, J.1    Link, J.2    Wirwahn, J.A.3    Claupein, W.4
  • 38
    • 84952837909 scopus 로고    scopus 로고
    • Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches
    • Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792-2820
    • (2015) ISPRS Int. J. Geo-Inf , vol.4 , pp. 2792-2820
    • Capolupo, A.1    Kooistra, L.2    Berendonk, C.3    Boccia, L.4    Suomalainen, J.5
  • 39
    • 84874253202 scopus 로고    scopus 로고
    • Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)
    • Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013, 171-l72, 281-294
    • (2013) Agric. For. Meteorol , vol.171-172 , pp. 281-294
    • Zarco-Tejada, P.J.1    Guillén-Climent, M.L.2    Hernández-Clemente, R.3    Catalina, A.4    González, M.R.5    Martín, P.6
  • 40
    • 84930936368 scopus 로고    scopus 로고
    • A multi-sensor approach for predicting biomass of extensively managed grassland
    • Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247-260
    • (2014) Comput. Electron. Agric , vol.109 , pp. 247-260
    • Reddersen, B.1    Fricke, T.2    Wachendorf, M.3
  • 41
    • 84886865428 scopus 로고    scopus 로고
    • Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards
    • Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards. Comput. Electron. Agric. 2013, 99, 236-247
    • (2013) Comput. Electron. Agric , vol.99 , pp. 236-247
    • Fricke, T.1    Wachendorf, M.2
  • 43
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
    • Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102-114
    • (2014) Remote Sens. Environ , vol.154 , pp. 102-114
    • Fassnacht, F.E.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernández, J.5    Corvalán, P.6    Koch, B.7
  • 44
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 45
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Draguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Draguţ, L.2
  • 47
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156-168
    • (2016) Remote Sens. Environ , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 48
    • 78249231399 scopus 로고    scopus 로고
    • Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
    • Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm. Remote Sens. 2010, 65, 581-590
    • (2010) ISPRS J Photogramm. Remote Sens , vol.65 , pp. 581-590
    • Koch, B.1
  • 49
    • 85009084533 scopus 로고    scopus 로고
    • Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
    • Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212-219
    • (2016) Crop J , vol.4 , pp. 212-219
    • Wang, L.1    Zhou, X.2    Zhu, X.3    Dong, Z.4    Guo, W.5
  • 50
    • 85007500718 scopus 로고    scopus 로고
    • Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery
    • Beijing, China, 10-15 July
    • Liu, Y.; Cheng, T.; Zhu, Y.; Tian, Y.; Cao, W.; Yao, X.; Wang, N. Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10-15 July 2016; pp. 7362-7365
    • (2016) Proceedings of the IEEE International Geoscience and Remote Sensing Symposium , pp. 7362-7365
    • Liu, Y.1    Cheng, T.2    Zhu, Y.3    Tian, Y.4    Cao, W.5    Yao, X.6    Wang, N.7
  • 51
    • 85040688083 scopus 로고    scopus 로고
    • A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy
    • Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10
    • (2018) Remote Sens , pp. 10
    • Yue, J.1    Feng, H.2    Yang, G.3    Li, Z.4
  • 52
    • 84861758703 scopus 로고    scopus 로고
    • Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content
    • Clevers, J.G.P.W.; Kooistra, L. Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574-583
    • (2012) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.5 , pp. 574-583
    • Clevers, J.G.P.W.1    Kooistra, L.2
  • 54
    • 85046950699 scopus 로고    scopus 로고
    • Capability of crop canopy sensing to predict crop parameters of cut grass swards aiming at early season variable rate nitrogen top dressings
    • Portz, G.; Gnyp, M.L.; Jasper, J. Capability of crop canopy sensing to predict crop parameters of cut grass swards aiming at early season variable rate nitrogen top dressings. Adv. Anim. Biosci. 2017, 8, 792-795
    • (2017) Adv. Anim. Biosci , vol.8 , pp. 792-795
    • Portz, G.1    Gnyp, M.L.2    Jasper, J.3
  • 57
    • 85050471443 scopus 로고    scopus 로고
    • (accessed on 23 May 2018)
    • Honkavaara, E.; Markelin, L.; Hakala, T.; Peltoniemi, J. The Metrology of Directional, Spectral Reflectance Factor Measurements Based on Area Format Imaging by UAVs. Available online: http://www. ingentaconnect.com/content/schweiz/pfg/2014/00002014/00000003/art00002 (accessed on 23 May 2018)
  • 59
    • 85050499625 scopus 로고    scopus 로고
    • (accessed on 28 May 2018)
    • National Land Survey of Finland. Finnref GNSS RINEX Service. 2018. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/positioning-services/rinex-palvelu (accessed on 28 May 2018)
    • (2018) Finnref GNSS RINEX Service
  • 61
    • 84971645573 scopus 로고    scopus 로고
    • Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry
    • Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129-143
    • (2016) Remote Sens. Environ , vol.183 , pp. 129-143
    • Cunliffe, A.M.1    Brazier, R.E.2    Anderson, K.3
  • 62
    • 85048294573 scopus 로고    scopus 로고
    • Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach
    • Méndez-Barroso, L.A.; Zárate-Valdez, J.L.; Robles-Morúa, A. Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 186-197
    • (2018) Int. J. Appl. Earth Obs. Geoinf , vol.69 , pp. 186-197
    • Méndez-Barroso, L.A.1    Zárate-Valdez, J.L.2    Robles-Morúa, A.3
  • 63
    • 85042524085 scopus 로고    scopus 로고
    • Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment
    • Honkavaara, E.; Khoramshahi, E. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment. Remote Sens. 2018, 10, 256
    • (2018) Remote Sens , vol.10 , pp. 256
    • Honkavaara, E.1    Khoramshahi, E.2
  • 64
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662
    • (1999) Int. J. Remote Sens , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 65
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 66
    • 0029110322 scopus 로고
    • Color Indices forWeed Identification Under Various Soil, Residue, and Lighting Conditions
    • Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices forWeed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259-269
    • (1995) Trans. ASAE , vol.38 , pp. 259-269
    • Woebbecke, D.M.1    Meyer, G.E.2    Von Bargen, K.3    Mortensen, D.A.4
  • 67
    • 0028975409 scopus 로고
    • Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
    • Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375-384
    • (1995) Remote Sens. Environ , vol.51 , pp. 375-384
    • Roujean, J.-L.1    Breon, F.-M.2
  • 69
    • 0029751226 scopus 로고    scopus 로고
    • Optimization of soil-adjusted vegetation indices
    • Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95-107
    • (1996) Remote Sens. Environ , vol.55 , pp. 95-107
    • Rondeaux, G.1    Steven, M.2    Baret, F.3
  • 70
    • 0002620932 scopus 로고
    • Utilisation de la haute resolution spectrale pour suivre l'etat des couverts vegetaux
    • Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l'etat des couverts vegetaux. Spectr. Signat. Objects Remote Sens. 1988, 287, 279
    • (1988) Spectr. Signat. Objects Remote Sens , vol.287 , pp. 279
    • Guyot, G.1    Baret, F.2
  • 71
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289-298
    • (1996) Remote Sens. Environ , vol.58 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 73
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337-352
    • (2004) Remote Sens. Environ , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 74
    • 10844226641 scopus 로고    scopus 로고
    • The MERIS terrestrial chlorophyll index
    • Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403-5413
    • (2004) Int. J. Remote Sens , vol.25 , pp. 5403-5413
    • Dash, J.1    Curran, P.J.2
  • 75
    • 0037356853 scopus 로고    scopus 로고
    • Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
    • Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271-282
    • (2003) J. Plant Physiol , vol.160 , pp. 271-282
    • Gitelson, A.A.1    Gritz, Y.2    Merzlyak, M.N.3
  • 78
    • 85040661193 scopus 로고    scopus 로고
    • Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy
    • Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy. Remote Sens. 2017, 9
    • (2017) Remote Sens , pp. 9
    • Danner, M.1    Berger, K.2    Wocher, M.3    Mauser, W.4    Hank, T.5
  • 79
    • 85040654514 scopus 로고    scopus 로고
    • Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data-Potential of unmanned aerial vehicle imagery
    • Roosjen, P.P.J.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G.P.W. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data-Potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14-26
    • (2018) Int. J. Appl. Earth Obs. Geoinf , vol.66 , pp. 14-26
    • Roosjen, P.P.J.1    Brede, B.2    Suomalainen, J.M.3    Bartholomeus, H.M.4    Kooistra, L.5    Clevers, J.G.P.W.6
  • 81
    • 84976384382 scopus 로고    scopus 로고
    • Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
    • Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.