-
1
-
-
43249133218
-
David Lewin and Maximally Even Sets
-
Amiot, Emmanuel., 2007. “David Lewin and Maximally Even Sets.” Journal of Mathematics and Music 1 (3): 157–172. doi: 10.1080/17459730701654990
-
(2007)
Journal of Mathematics and Music
, vol.1
, Issue.3
, pp. 157-172
-
-
Amiot, E.1
-
2
-
-
80053615922
-
Discrete Fourier Transform and Bach's Good Temperament
-
Amiot, Emmanuel., 2009. “Discrete Fourier Transform and Bach's Good Temperament.” Music Theory Online 15 (2).
-
(2009)
Music Theory Online
, vol.15
, Issue.2
-
-
Amiot, E.1
-
5
-
-
85048892084
-
Decompositions of Nil Sums of Roots of Unity. An Adaptation of ‘Sommes Nulles de Racines de l'Unité’
-
Amiot, Emmanuel., 2017a. “Decompositions of Nil Sums of Roots of Unity. An Adaptation of ‘Sommes Nulles de Racines de l'Unité’.” Journal of Mathematics and Music 11 (2). https://doi.org/10.1080/17459737.2018.1453951.
-
(2017)
Journal of Mathematics and Music
, vol.11
, Issue.2
-
-
Amiot, E.1
-
6
-
-
85049648302
-
The Discrete Fourier Transform of a Distribution
-
Amiot, Emmanuel., 2017b. “The Discrete Fourier Transform of a Distribution.” Journal of Mathematics and Music 11 (2). https://doi.org/10.1080/17459737.2018.1453952
-
(2017)
Journal of Mathematics and Music
, vol.11
, Issue.2
-
-
Amiot, E.1
-
7
-
-
84857538789
-
An Algebra for Periodic Rhythms and Scales
-
Amiot, Emmanuel, and William A., Sethares. 2011. “An Algebra for Periodic Rhythms and Scales.” Journal of Mathematics and Music 5 (3): 149–169. doi: 10.1080/17459737.2011.640469
-
(2011)
Journal of Mathematics and Music
, vol.5
, Issue.3
, pp. 149-169
-
-
Amiot, E.1
Sethares, W.A.2
-
9
-
-
85050585204
-
-
Normaliz. Algorithms for rational cones and affine monoids. Accessed 30 October 2017
-
Bruns, Winfried, Bogdan, Ichim, Tim, Römer, Richard, Sieg, and Christof, Söger. 2016. “Normaliz. Algorithms for rational cones and affine monoids.” Accessed 30 October 2017. https://www.normaliz.uni-osnabrueck.de.
-
(2016)
-
-
Bruns, W.1
Ichim, B.2
Römer, T.3
Sieg, R.4
Söger, C.5
-
10
-
-
67649932747
-
Continuous Harmonic Spaces
-
Callender, Clifton., 2007. “Continuous Harmonic Spaces.” Journal of Music Theory 51 (2): 277–332. doi: 10.1215/00222909-2009-004
-
(2007)
Journal of Music Theory
, vol.51
, Issue.2
, pp. 277-332
-
-
Callender, C.1
-
11
-
-
77955739465
-
Aspects of Well-Formed Scales
-
Carey, Norman, and David, Clampitt. 1989. “Aspects of Well-Formed Scales.” Music Theory Spectrum 11 (2): 187–206. doi: 10.2307/745935
-
(1989)
Music Theory Spectrum
, vol.11
, Issue.2
, pp. 187-206
-
-
Carey, N.1
Clampitt, D.2
-
12
-
-
85050590769
-
-
Mathematical and Musical Properties of Pairwise Well-Formed Scales. Berlin, 18–20 May 2007, edited by Timour Klouche and Thomas Noll, 464–468. 37 of the series Communications Computer and Information Science. Berlin: Springer-Verlag
-
Clampitt, David., 2007. “Mathematical and Musical Properties of Pairwise Well-Formed Scales.” In Proceedings of the First Conference on Mathematics and Computation in Music (MCM), Berlin, 18–20 May 2007, edited by Timour Klouche and Thomas Noll, 464–468. Vol. 37 of the series Communications in Computer and Information Science. Berlin: Springer-Verlag.
-
(2007)
Proceedings of the First Conference on Mathematics and Computation in Music (MCM)Communications in Computer and Information Science
-
-
Clampitt, D.1
-
13
-
-
0013692598
-
Maximally Even Sets
-
Clough, John, and Jack, Douthett. 1991. “Maximally Even Sets.” Journal of Music Theory 35 (1/2): 93–173. doi: 10.2307/843811
-
(1991)
Journal of Music Theory
, vol.35
, Issue.1-2
, pp. 93-173
-
-
Clough, J.1
Douthett, J.2
-
14
-
-
61949140601
-
Properties and Generability of Transpositionally Invariant Sets
-
Cohn, Richard., 1991. “Properties and Generability of Transpositionally Invariant Sets.” Journal of Music Theory 35 (1/2): 1–32. doi: 10.2307/843808
-
(1991)
Journal of Music Theory
, vol.35
, Issue.1-2
, pp. 1-32
-
-
Cohn, R.1
-
15
-
-
85050645464
-
-
Max Software Tools for Media. Accessed 23 May 2017
-
Cycling '74. 2017. “Max Software Tools for Media.” Accessed 23 May 2017. https://cycling74.com/products/max/.
-
(2017)
-
-
-
16
-
-
84879806001
-
The Effect of Microtiming Deviations on the Perception of Groove in Short Rhythms
-
Davies, Matthew, Guy, Madison, Pedro, Silva, and Fabien, Gouyon. 2013. “The Effect of Microtiming Deviations on the Perception of Groove in Short Rhythms.” Music Perception 30 (5): 498–511. doi: 10.1525/mp.2013.30.5.497
-
(2013)
Music Perception
, vol.30
, Issue.5
, pp. 498-511
-
-
Davies, M.1
Madison, G.2
Silva, P.3
Gouyon, F.4
-
17
-
-
77955734327
-
-
WF Scales, ME Sets, and Christoffel Words. Berlin, 18–20 May 2007, edited by Timour Klouche and Thomas Noll, 477–488. 37 of the series Communications Computer and Information Science. Berlin: Springer-Verlag
-
Domínguez, Manuel, David, Clampitt, and Thomas, Noll. 2009. “WF Scales, ME Sets, and Christoffel Words.” In Proceedings of the First Conference on Mathematics and Computation in Music (MCM), Berlin, 18–20 May 2007, edited by Timour Klouche and Thomas Noll, 477–488. Vol. 37 of the series Communications in Computer and Information Science. Berlin: Springer-Verlag.
-
(2009)
Proceedings of the First Conference on Mathematics and Computation in Music (MCM)Communications in Computer and Information Science
-
-
Domínguez, M.1
Clampitt, D.2
Noll, T.3
-
18
-
-
72449194088
-
A Middle Path Between Just Intonation and the Equal Temperaments, Part 1
-
Erlich, Paul., 2006. “A Middle Path Between Just Intonation and the Equal Temperaments, Part 1.” Xenharmonikôn 18: 159–199.
-
(2006)
Xenharmonikôn
, vol.18
, pp. 159-199
-
-
Erlich, P.1
-
20
-
-
84878900150
-
Music on the Timing Grid: The Influence of Microtiming on the Perceived Groove Quality of a Simple Drum Pattern Performance
-
Frühauf, Jan, Reinhard, Kopiez, and Friedrich, Platz. 2013. “Music on the Timing Grid: The Influence of Microtiming on the Perceived Groove Quality of a Simple Drum Pattern Performance.” Musicae Scientiae 17 (2): 246–260. doi: 10.1177/1029864913486793
-
(2013)
Musicae Scientiae
, vol.17
, Issue.2
, pp. 246-260
-
-
Frühauf, J.1
Kopiez, R.2
Platz, F.3
-
21
-
-
84871413662
-
Entropy-Based Tuning of Musical Instruments
-
Hinrichsen, Haye., 2012. “Entropy-Based Tuning of Musical Instruments.” Revista Brasileira de Ensino de Física 34 (2): 2301-1–2301-8.
-
(2012)
Revista Brasileira de Ensino de Física
, vol.34
, Issue.2
, pp. 2301-1-2301-8
-
-
Hinrichsen, H.1
-
24
-
-
0034135058
-
On Vanishing Sums of Roots of Unity
-
Lam, Tsit Y., and Ka H., Leung. 2000. “On Vanishing Sums of Roots of Unity.” Journal of Algebra 224 (1): 91–109. doi: 10.1006/jabr.1999.8089
-
(2000)
Journal of Algebra
, vol.224
, Issue.1
, pp. 91-109
-
-
Lam, T.Y.1
Leung, K.H.2
-
25
-
-
65849284045
-
Re: Intervallic Relations between Two Collections of Notes
-
Lewin, David., 1959. “Re: Intervallic Relations between Two Collections of Notes.” Journal of Music Theory 3 (2): 298–301. doi: 10.2307/842856
-
(1959)
Journal of Music Theory
, vol.3
, Issue.2
, pp. 298-301
-
-
Lewin, D.1
-
30
-
-
85050581849
-
-
A Computational Model of the Cognition of Tonality. Ph.D. thesis, The Open University, Milton Keynes, UK
-
Milne, Andrew J., 2013. “A Computational Model of the Cognition of Tonality.” Ph.D. thesis, The Open University, Milton Keynes, UK.
-
(2013)
-
-
Milne, A.J.1
-
31
-
-
84949032079
-
-
Perfect Balance: A Novel Principle for the Construction of Musical Scales and Meters. London, UK, 22–25 June 2015, edited by Tom Collins, David Meredith, and Anja Volk, 97–108. 9110 of the series Lecture Notes Artificial Intelligence. Cham, Switzerland: Springer International Publishing
-
Milne, Andrew J., David, Bulger, Steffen A., Herff, and William A., Sethares. 2015. “Perfect Balance: A Novel Principle for the Construction of Musical Scales and Meters.” In Proceedings of the 5th International Conference on Mathematics and Computation in Music (MCM), London, UK, 22–25 June 2015, edited by Tom Collins, David Meredith, and Anja Volk, 97–108. Vol. 9110 of the series Lecture Notes in Artificial Intelligence. Cham, Switzerland: Springer International Publishing.
-
(2015)
Proceedings of the 5th International Conference on Mathematics and Computation in Music (MCM)Lecture Notes in Artificial Intelligence
-
-
Milne, A.J.1
Bulger, D.2
Herff, S.A.3
Sethares, W.A.4
-
32
-
-
84962761725
-
Computational Creation and Morphing of Multilevel Rhythms by Control of Evenness
-
Milne, Andrew J., and Roger T., Dean. 2016. “Computational Creation and Morphing of Multilevel Rhythms by Control of Evenness.” Computer Music Journal 40 (1): 35–53. doi: 10.1162/COMJ_a_00343
-
(2016)
Computer Music Journal
, vol.40
, Issue.1
, pp. 35-53
-
-
Milne, A.J.1
Dean, R.T.2
-
33
-
-
85050618319
-
-
XronoMorph: Algorithmic Generation of Perfectly Balanced and Well-Formed Rhythms. Brisbane, Australia, 11–15 July 2016. Brisbane: Queensland Conservatorium Griffith University
-
Milne, Andrew J., Steffen A., Herff, David, Bulger, William A., Sethares, and Roger T., Dean. 2016. “XronoMorph: Algorithmic Generation of Perfectly Balanced and Well-Formed Rhythms.” In Proceedings of the 16th International Conference on New Interfaces for Musical Expression (NIME 2016), Brisbane, Australia, 11–15 July 2016. Brisbane: Queensland Conservatorium Griffith University. http://www.nime.org/proceedings/2016/nime2016_paper0077.pdf.
-
(2016)
Proceedings of the 16th International Conference on New Interfaces for Musical Expression (NIME 2016)
-
-
Milne, A.J.1
Herff, S.A.2
Bulger, D.3
Sethares, W.A.4
Dean, R.T.5
-
34
-
-
84975849809
-
Empirically Testing Voice-Leading, Tonnetz, and Spectral Models of Perceived Triadic Distance
-
Milne, Andrew J., and Simon, Holland. 2016. “Empirically Testing Voice-Leading, Tonnetz, and Spectral Models of Perceived Triadic Distance.” Journal of Mathematics and Music 10 (1): 59–85. doi: 10.1080/17459737.2016.1152517
-
(2016)
Journal of Mathematics and Music
, vol.10
, Issue.1
, pp. 59-85
-
-
Milne, A.J.1
Holland, S.2
-
35
-
-
84929082214
-
A Spectral Pitch Class Model of the Probe Tone Data and Scalic Tonality
-
Milne, Andrew J., Robin, Laney, and David B., Sharp. 2015. “A Spectral Pitch Class Model of the Probe Tone Data and Scalic Tonality.” Music Perception 32 (4): 364–393. doi: 10.1525/mp.2015.32.4.364
-
(2015)
Music Perception
, vol.32
, Issue.4
, pp. 364-393
-
-
Milne, A.J.1
Laney, R.2
Sharp, D.B.3
-
36
-
-
84992580464
-
Testing a Spectral Model of Tonal Affinity with Microtonal Melodies and Inharmonic Spectra
-
Milne, Andrew J., Robin, Laney, and David B., Sharp. 2016. “Testing a Spectral Model of Tonal Affinity with Microtonal Melodies and Inharmonic Spectra.” Musicae Scientiae 20 (4): 465–494. doi: 10.1177/1029864915622682
-
(2016)
Musicae Scientiae
, vol.20
, Issue.4
, pp. 465-494
-
-
Milne, A.J.1
Laney, R.2
Sharp, D.B.3
-
37
-
-
79957948253
-
Modelling the Similarity of Pitch Collections with Expectation Tensors
-
Milne, Andrew J., William A., Sethares, Robin, Laney, and David B., Sharp. 2011. “Modelling the Similarity of Pitch Collections with Expectation Tensors.” Journal of Mathematics and Music 5 (1): 1–20. doi: 10.1080/17459737.2011.573678
-
(2011)
Journal of Mathematics and Music
, vol.5
, Issue.1
, pp. 1-20
-
-
Milne, A.J.1
Sethares, W.A.2
Laney, R.3
Sharp, D.B.4
-
38
-
-
57749129642
-
Tuning Continua and Keyboard Layouts
-
Milne, Andrew J., William A., Sethares, and James, Plamondon. 2008. “Tuning Continua and Keyboard Layouts.” Journal of Mathematics and Music 2 (1): 1–19. doi: 10.1080/17459730701828677
-
(2008)
Journal of Mathematics and Music
, vol.2
, Issue.1
, pp. 1-19
-
-
Milne, A.J.1
Sethares, W.A.2
Plamondon, J.3
-
39
-
-
85050604308
-
-
A Unified Theory of Chord Quality Equal Temperaments. Ph.D. thesis, University of Rochester
-
Quinn, Ian., 2004. “A Unified Theory of Chord Quality in Equal Temperaments.” Ph.D. thesis, University of Rochester.
-
(2004)
-
-
Quinn, I.1
-
40
-
-
0027302792
-
Local Consonance and the Relationship Between Timbre and Scale
-
Sethares, William A., 1993. “Local Consonance and the Relationship Between Timbre and Scale.” The Journal of the Acoustical Society of America 94 (3): 1218–1228. doi: 10.1121/1.408175
-
(1993)
The Journal of the Acoustical Society of America
, vol.94
, Issue.3
, pp. 1218-1228
-
-
Sethares, W.A.1
-
41
-
-
84887881038
-
-
2nd ed. London, UK: Springer-Verlag
-
Sethares, William A., 2005. Tuning, Timbre, Spectrum, Scale. 2nd ed. London, UK: Springer-Verlag.
-
(2005)
Tuning, Timbre, Spectrum, Scale
-
-
Sethares, W.A.1
-
42
-
-
72449157866
-
Spectral Tools for Dynamic Tonality and Audio Morphing
-
Sethares, William A., Andrew J., Milne, Stefan, Tiedje, Anthony, Prechtl, and James, Plamondon. 2009. “Spectral Tools for Dynamic Tonality and Audio Morphing.” Computer Music Journal 33 (2): 71–84. doi: 10.1162/comj.2009.33.2.71
-
(2009)
Computer Music Journal
, vol.33
, Issue.2
, pp. 71-84
-
-
Sethares, W.A.1
Milne, A.J.2
Tiedje, S.3
Prechtl, A.4
Plamondon, J.5
-
43
-
-
84940644968
-
A Mathematical Theory of Communication
-
Shannon, Claude E., 1948. “A Mathematical Theory of Communication.” The Bell System Technical Journal 27 (3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
The Bell System Technical Journal
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.E.1
-
44
-
-
85050619149
-
-
The On-Line Encyclopedia of Integer Sequences. Accessed 30 October 2017
-
Sloane, Neil J. A., 2016. “The On-Line Encyclopedia of Integer Sequences.” Accessed 30 October 2017. https://oeis.org.
-
(2016)
-
-
Sloane, N.J.A.1
-
45
-
-
54249162912
-
Minimal Vanishing Sums of Roots of Unity with Large Coefficients
-
Steinberger, John P., 2008. “Minimal Vanishing Sums of Roots of Unity with Large Coefficients.” Proceedings of the London Mathematical Society 97 (3): 689–717. doi: 10.1112/plms/pdn006
-
(2008)
Proceedings of the London Mathematical Society
, vol.97
, Issue.3
, pp. 689-717
-
-
Steinberger, J.P.1
-
48
-
-
33745917405
-
The Geometry of Musical Chords
-
Tymoczko, Dmitri., 2006. “The Geometry of Musical Chords.” Science 313 (5783): 72–74. doi: 10.1126/science.1126287
-
(2006)
Science
, vol.313
, Issue.5783
, pp. 72-74
-
-
Tymoczko, D.1
-
49
-
-
85050583219
-
-
Letter to Chalmers Pertaining to Moments-of-Symmetry/Tanabe Cycle. Accessed 31 October 2017
-
Wilson, Erv., 1975. “Letter to Chalmers Pertaining to Moments-of-Symmetry/Tanabe Cycle.” Accessed 31 October 2017. http://www.anaphoria.com/mos.pdf.
-
(1975)
-
-
Wilson, E.1
-
50
-
-
0000867278
-
Improving Hit-and-Run for Global Optimization
-
Zabinsky, Zelda B., Robert L., Smith, J. Fred, McDonald, H. Edwin, Romeijn, and David E., Kaufman. 1993. “Improving Hit-and-Run for Global Optimization.” Journal of Global Optimization 3 (2): 171–192. doi: 10.1007/BF01096737
-
(1993)
Journal of Global Optimization
, vol.3
, Issue.2
, pp. 171-192
-
-
Zabinsky, Z.B.1
Smith, R.L.2
McDonald, J.F.3
Romeijn, H.E.4
Kaufman, D.E.5
|