메뉴 건너뛰기




Volumn 18, Issue 7, 2018, Pages

A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing

Author keywords

BLE; Classification; Diabetes; Forecasting; Real time data processing

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD PRESSURE; CLASSIFICATION (OF INFORMATION); DATA HANDLING; FORECASTING; INFORMATION MANAGEMENT; LEARNING SYSTEMS; MEDICAL PROBLEMS; MHEALTH; SENSOR NODES;

EID: 85049837696     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18072183     Document Type: Article
Times cited : (173)

References (80)
  • 2
    • 32144448938 scopus 로고    scopus 로고
    • Standards of medical care in diabetes–2006
    • American Diabetes Association. Standards of medical care in diabetes–2006. Diabetes Care. 2006, 29 (Suppl. 1), s4–s42.
    • (2006) Diabetes Care. , vol.29 , pp. ss4-s42
  • 3
    • 85044284350 scopus 로고    scopus 로고
    • Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives
    • Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives. Biosensors 2018, 13, 24. [CrossRef] [PubMed]
    • (2018) Biosensors , vol.13 , pp. 24
    • Acciaroli, G.1    Vettoretti, M.2    Facchinetti, A.3    Sparacino, G.4
  • 4
    • 41149129233 scopus 로고    scopus 로고
    • Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis
    • Rubino, F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008, 31 (Suppl. 2), S290–S296. [CrossRef] [PubMed]
    • (2008) Diabetes Care , vol.31 , pp. S290-S296
    • Rubino, F.1
  • 5
    • 85000917701 scopus 로고    scopus 로고
    • accessed on 1 May 2018
    • Korean Diabetes Association. Diabetes Fact Sheet in Korea. 2016. Available online: http://www.diabetes.or. kr/temp/KDA_fact_sheet%202016.pdf (accessed on 1 May 2018).
    • (2016) Diabetes Fact Sheet in Korea
  • 6
    • 85041291397 scopus 로고    scopus 로고
    • accessed on 1 May 2018
    • National Diabetes Statistics Report. Estimates of Diabetes and Its Burden in the United States. 2017. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report. pdf (accessed on 1 May 2018).
    • (2017) Estimates of Diabetes and Its Burden in the United States
  • 7
    • 2342466734 scopus 로고    scopus 로고
    • Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030
    • Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [CrossRef] [PubMed]
    • (2004) Diabetes Care , vol.27 , pp. 1047-1053
    • Wild, S.1    Roglic, G.2    Green, A.3    Sicree, R.4    King, H.5
  • 9
    • 85039732843 scopus 로고    scopus 로고
    • Introduction: Standards of medical care in diabetes—2018
    • American Diabetes Association. Introduction: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41 (Suppl. 1), S1–S2. [CrossRef]
    • (2018) Diabetes Care , vol.41 , pp. S1-S2
  • 10
    • 40749093652 scopus 로고    scopus 로고
    • Role of physical activity in diabetes management and prevention
    • Hayes, C.; Kriska, A. Role of physical activity in diabetes management and prevention. J. Am. Diet. Assoc. 2008, 108 (Suppl. 1), S19–S23. [CrossRef] [PubMed]
    • (2008) J. Am. Diet. Assoc , vol.108 , pp. S19-S23
    • Hayes, C.1    Kriska, A.2
  • 11
    • 84901808391 scopus 로고    scopus 로고
    • Prevention and management of type 2 diabetes: Dietary components and nutritional strategies
    • Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [CrossRef]
    • (2014) Lancet , vol.383 , pp. 1999-2007
    • Ley, S.H.1    Hamdy, O.2    Mohan, V.3    Hu, F.B.4
  • 12
    • 10244223555 scopus 로고
    • Electrode systems for continuous monitoring in cardiovascular surgery
    • Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [CrossRef] [PubMed]
    • (1962) Ann. N. Y. Acad. Sci. , vol.102 , pp. 29-45
    • Clark, L.C.1    Lyons, C.2
  • 13
    • 49049113124 scopus 로고    scopus 로고
    • Electrochemical glucose sensors and their applications in diabetes management
    • Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [CrossRef] [PubMed]
    • (2008) Chem. Rev. , vol.108 , pp. 2482-2505
    • Heller, A.1    Feldman, B.2
  • 14
    • 85027552369 scopus 로고    scopus 로고
    • Glucose sensing for diabetes monitoring: Recent developments
    • Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 1866
    • Bruen, D.1    Delaney, C.2    Florea, L.3    Diamond, D.4
  • 16
    • 77957222420 scopus 로고    scopus 로고
    • Use of sensors in the treatment and follow-up of patients with diabetes mellitus
    • Torres, I.; Baena, M.G.; Cayon, M.; Ortego-Rojo, J.; Aguilar-Diosdado, M. Use of sensors in the treatment and follow-up of patients with diabetes mellitus. Sensors 2010, 10, 7404–7420. [CrossRef] [PubMed]
    • (2010) Sensors , vol.10 , pp. 7404-7420
    • Torres, I.1    Baena, M.G.2    Cayon, M.3    Ortego-Rojo, J.4    Aguilar-Diosdado, M.5
  • 18
    • 84913591472 scopus 로고    scopus 로고
    • Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things
    • Nieminen, J.; Gomez, C.; Isomaki, M.; Savolainen, T.; Patil, B.; Shelby, Z.; Xi, M.; Oller, J. Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things. IEEE Netw. 2014, 28, 83–90. [CrossRef]
    • (2014) IEEE Netw , vol.28 , pp. 83-90
    • Nieminen, J.1    Gomez, C.2    Isomaki, M.3    Savolainen, T.4    Patil, B.5    Shelby, Z.6    Xi, M.7    Oller, J.8
  • 19
    • 77649107719 scopus 로고    scopus 로고
    • Applications, challenges, and prospective in emerging body area networking technologies
    • Patel, M.; Wang, J. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun. 2010, 17, 80–88. [CrossRef]
    • (2010) IEEE Wirel Commun , vol.17 , pp. 80-88
    • Patel, M.1    Wang, J.2
  • 21
    • 84867006336 scopus 로고    scopus 로고
    • Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology
    • Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [CrossRef]
    • (2012) Sensors , vol.12 , pp. 11734-11753
    • Gomez, C.1    Oller, J.2    Paradells, J.3
  • 22
    • 84901334775 scopus 로고    scopus 로고
    • ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives
    • Fahim, M.; Idris, M.; Ali, R.; Nugent, C.; Kang, B.; Huh, E.N.; Lee, S. ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives. Sensors 2014, 14, 9313–9329. [CrossRef] [PubMed]
    • (2014) Sensors , vol.14 , pp. 9313-9329
    • Fahim, M.1    Idris, M.2    Ali, R.3    Nugent, C.4    Kang, B.5    Huh, E.N.6    Lee, S.7
  • 23
    • 85040036826 scopus 로고    scopus 로고
    • System framework for cardiovascular disease prediction based on big data technology
    • Han, S.H.; Kim, K.O.; Cha, E.J.; Kim, K.A.; Shon, H.S. System framework for cardiovascular disease prediction based on big data technology. Symmetry 2017, 9, 293. [CrossRef]
    • (2017) Symmetry , vol.9 , pp. 293
    • Han, S.H.1    Kim, K.O.2    Cha, E.J.3    Kim, K.A.4    Shon, H.S.5
  • 24
    • 85046104661 scopus 로고    scopus 로고
    • Big data analysis for personalized health activities: Machine learning processing for automatic keyword extraction approach
    • Huh, J.H. Big data analysis for personalized health activities: Machine learning processing for automatic keyword extraction approach. Symmetry 2018, 10, 93. [CrossRef]
    • (2018) Symmetry , vol.10 , pp. 93
    • Huh, J.H.1
  • 26
    • 85002263449 scopus 로고    scopus 로고
    • Evaluation of relational and NoSQL database architectures to manage genomic annotations
    • Schulz, W.L.; Nelson, B.G.; Felker, D.K.; Durant, T.J.S.; Torres, R. Evaluation of relational and NoSQL database architectures to manage genomic annotations. J. Biomed. Inform. 2016, 64, 288–295. [CrossRef] [PubMed]
    • (2016) J. Biomed. Inform. , vol.64 , pp. 288-295
    • Schulz, W.L.1    Nelson, B.G.2    Felker, D.K.3    Durant, T.J.S.4    Torres, R.5
  • 29
    • 84964912615 scopus 로고    scopus 로고
    • An effective model for store and retrieve big health data in cloud computing
    • Goli-Malekabadi, Z.; Sargolzaei-Javan, M.; Akbari, M.K. An effective model for store and retrieve big health data in cloud computing. Comput. Methods Prog. Biomed. 2016, 132, 75–82. [CrossRef] [PubMed]
    • (2016) Comput. Methods Prog. Biomed. , vol.132 , pp. 75-82
    • Goli-Malekabadi, Z.1    Sargolzaei-Javan, M.2    Akbari, M.K.3
  • 30
    • 84992391880 scopus 로고    scopus 로고
    • Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system
    • Nkenyereye, L.; Jang, J.-W. Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system. Procedia Comput. Sci. 2016, 98, 382–387. [CrossRef]
    • (2016) Procedia Comput. Sci. , vol.98 , pp. 382-387
    • Nkenyereye, L.1    Jang, J.-W.2
  • 32
    • 85007206682 scopus 로고    scopus 로고
    • SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification
    • Cheruku, R.; Edla, D.R.; Kuppili, V. SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification. Comput. Biol. Med. 2017, 81, 79–92. [CrossRef] [PubMed]
    • (2017) Comput. Biol. Med. , vol.81 , pp. 79-92
    • Cheruku, R.1    Edla, D.R.2    Kuppili, V.3
  • 33
    • 85043505447 scopus 로고    scopus 로고
    • Type 2 diabetes mellitus prediction model based on data mining
    • Wu, H.; Yang, S.; Huang, Z.; He, J.; Wang, X. Type 2 diabetes mellitus prediction model based on data mining. Inform. Med. Unlocked 2018, 10, 100–107. [CrossRef]
    • (2018) Inform. Med. Unlocked , vol.10 , pp. 100-107
    • Wu, H.1    Yang, S.2    Huang, Z.3    He, J.4    Wang, X.5
  • 34
    • 84872837690 scopus 로고    scopus 로고
    • Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
    • Meng, X.; Huang, Y.; Rao, D.; Zhang, Q.; Liu, Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J. Med. Sci. 2013, 29, 93–99. [CrossRef] [PubMed]
    • (2013) Kaohsiung J. Med. Sci. , vol.29 , pp. 93-99
    • Meng, X.1    Huang, Y.2    Rao, D.3    Zhang, Q.4    Liu, Q.5
  • 35
    • 84994275591 scopus 로고    scopus 로고
    • Performance analysis of data mining classification techniques to predict diabetes
    • Perveen, S.; Shahbaz, M.; Guergachi, A.; Keshavjee, K. Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput. Sci. 2016, 82, 115–121. [CrossRef]
    • (2016) Procedia Comput. Sci. , vol.82 , pp. 115-121
    • Perveen, S.1    Shahbaz, M.2    Guergachi, A.3    Keshavjee, K.4
  • 36
    • 84962885345 scopus 로고    scopus 로고
    • Comparison of classifiers for the risk of diabetes prediction
    • Nai-arun, N.; Moungmai, R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput. Sci. 2015, 69, 132–142. [CrossRef]
    • (2015) Procedia Comput. Sci. , vol.69 , pp. 132-142
    • Nai-Arun, N.1    Moungmai, R.2
  • 37
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [CrossRef] [PubMed]
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , pp. 931-937
    • Sparacino, G.1    Zanderigo, F.2    Corazza, S.3    Maran, A.4    Facchinetti, A.5    Cobelli, C.6
  • 39
    • 84999863133 scopus 로고    scopus 로고
    • Effects of external factors in CGM sensor glucose concentration prediction
    • Ahmed, H.B.; Serener, A. Effects of external factors in CGM sensor glucose concentration prediction. Procedia Comput. Sci. 2016, 102, 623–629. [CrossRef]
    • (2016) Procedia Comput. Sci. , vol.102 , pp. 623-629
    • Ahmed, H.B.1    Serener, A.2
  • 40
    • 85044099313 scopus 로고    scopus 로고
    • Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
    • Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [CrossRef]
    • (2018) Biocybern. Biomed. Eng. , vol.38 , pp. 362-372
    • Hamdi, T.1    Ali, J.B.2    Di Costanzo, V.3    Fnaiech, F.4    Moreau, E.5    Ginoux, J.6
  • 41
    • 77953494285 scopus 로고    scopus 로고
    • Glucose biosensors: An overview of use in clinical practice
    • Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [CrossRef] [PubMed]
    • (2010) Sensors , vol.10 , pp. 4558-4576
    • Yoo, E.H.1    Lee, S.Y.2
  • 42
    • 84868251461 scopus 로고    scopus 로고
    • Italian contributions to the development of continuous glucose monitoring sensors for diabetes management
    • Sparacino, G.; Zanon, M.; Facchinetti, A.; Zecchin, C.; Maran, A.; Cobelli, C. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors 2012, 12, 13753–13780. [CrossRef] [PubMed]
    • (2012) Sensors , vol.12 , pp. 13753-13780
    • Sparacino, G.1    Zanon, M.2    Facchinetti, A.3    Zecchin, C.4    Maran, A.5    Cobelli, C.6
  • 43
    • 30944465397 scopus 로고    scopus 로고
    • A comparison of blood glucose meters in Australia
    • Cohen, M.; Boyle, E.; Delaney, C.; Shaw, J. A comparison of blood glucose meters in Australia. Diabetes Res. Clin. Pract. 2006, 71, 113–118. [CrossRef] [PubMed]
    • (2006) Diabetes Res. Clin. Pract. , vol.71 , pp. 113-118
    • Cohen, M.1    Boyle, E.2    Delaney, C.3    Shaw, J.4
  • 47
    • 84861997111 scopus 로고    scopus 로고
    • Internet of Things: Vision, applications and research challenges
    • Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of Things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]
    • (2012) Ad Hoc Netw , vol.10 , pp. 1497-1516
    • Miorandi, D.1    Sicari, S.2    de Pellegrini, F.3    Chlamtac, I.4
  • 49
    • 85020030453 scopus 로고    scopus 로고
    • Location-enhanced activity recognition in indoor environments using off the shelf smart watch technology and BLE beacons
    • Filippoupolitis, A.; Oliff, W.; Takand, B.; Loukas, G. Location-enhanced activity recognition in indoor environments using off the shelf smart watch technology and BLE beacons. Sensors 2017, 17, 1230. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 1230
    • Filippoupolitis, A.1    Oliff, W.2    Takand, B.3    Loukas, G.4
  • 50
    • 85044342269 scopus 로고    scopus 로고
    • Multi-residential activity labelling in smart homes with wearable tags using BLE technology
    • Mokhtari, G.; Anvari-Moghaddam, A.; Zhang, Q.; Karunanithi, M. Multi-residential activity labelling in smart homes with wearable tags using BLE technology. Sensors 2018, 18, 908. [CrossRef] [PubMed]
    • (2018) Sensors , vol.18 , pp. 908
    • Mokhtari, G.1    Anvari-Moghaddam, A.2    Zhang, Q.3    Karunanithi, M.4
  • 51
    • 85046651306 scopus 로고    scopus 로고
    • A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages
    • Wang, S.-S. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages. Sensors 2018, 18, 1442. [CrossRef] [PubMed]
    • (2018) Sensors , vol.18 , pp. 1442
    • Wang, S.-S.1
  • 52
    • 84985030740 scopus 로고    scopus 로고
    • BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario
    • 51–59
    • Gentili, M.; Sannino, R.; Petracca, M. BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario. Comput. Commun. 2016, 89–90, 51–59. [CrossRef]
    • (2016) Comput. Commun. , pp. 89-90
    • Gentili, M.1    Sannino, R.2    Petracca, M.3
  • 53
    • 85046167539 scopus 로고    scopus 로고
    • Bluetooth gas sensing module combined with smartphones for air quality monitoring
    • Suárez, J.I.; Arroyo, P.; Lozano, J.; Herrero, J.L.; Padilla, M. Bluetooth gas sensing module combined with smartphones for air quality monitoring. Chemosphere 2018, 205, 618–626. [CrossRef] [PubMed]
    • (2018) Chemosphere , vol.205 , pp. 618-626
    • Suárez, J.I.1    Arroyo, P.2    Lozano, J.3    Herrero, J.L.4    Padilla, M.5
  • 55
    • 77955478147 scopus 로고    scopus 로고
    • Bluetooth low energy: Wireless connectivity for medical monitoring
    • Omre, A.H. Bluetooth low energy: Wireless connectivity for medical monitoring. J. Diabetes Sci. Technol. 2010, 4, 457–463. [CrossRef] [PubMed]
    • (2010) J. Diabetes Sci. Technol. , vol.4 , pp. 457-463
    • Omre, A.H.1
  • 56
    • 84969548952 scopus 로고    scopus 로고
    • Wearable Noncontact Armband for Mobile ECG Monitoring System
    • Rachim, V.P.; Chung, W.Y. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [CrossRef] [PubMed]
    • (2016) IEEE Trans. Biomed. Circuits Syst. , vol.10 , pp. 1112-1118
    • Rachim, V.P.1    Chung, W.Y.2
  • 57
    • 85031292846 scopus 로고    scopus 로고
    • An IoT-based computational framework for healthcare monitoring in mobile environments
    • Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J. An IoT-based computational framework for healthcare monitoring in mobile environments. Sensors 2017, 17, 2302. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 2302
    • Mora, H.1    Gil, D.2    Terol, R.M.3    Azorín, J.4    Szymanski, J.5
  • 58
    • 84953320624 scopus 로고    scopus 로고
    • Performance of the first combined smartwatch and smartphone diabetes diary application study
    • Arsand, E.; Muzny, M.; Bradway, M.; Muzik, J.; Hartvigsen, G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diabetes Sci. Technol. 2015, 9, 556–563. [CrossRef] [PubMed]
    • (2015) J. Diabetes Sci. Technol. , vol.9 , pp. 556-563
    • Arsand, E.1    Muzny, M.2    Bradway, M.3    Muzik, J.4    Hartvigsen, G.5
  • 59
    • 85029010171 scopus 로고    scopus 로고
    • Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment
    • Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017, 6, 65. [CrossRef]
    • (2017) Electronics , vol.6 , pp. 65
    • Cappon, G.1    Acciaroli, G.2    Vettoretti, M.3    Facchinetti, A.4    Sparacino, G.5
  • 60
    • 84891795089 scopus 로고    scopus 로고
    • On the capability of smartphones to perform as communication gateways in medical wireless personal area networks
    • Morón, M.J.; Luque, R.; Casilari, E. On the capability of smartphones to perform as communication gateways in medical wireless personal area networks. Sensors 2014, 14, 575–594. [CrossRef] [PubMed]
    • (2014) Sensors , vol.14 , pp. 575-594
    • Morón, M.J.1    Luque, R.2    Casilari, E.3
  • 61
    • 77951752358 scopus 로고    scopus 로고
    • A monitoring and advisory system for diabetes patient management using a rule-based method and KNN
    • Lee, M.; Gatton, T.M.; Lee, K.K. A monitoring and advisory system for diabetes patient management using a rule-based method and KNN. Sensors 2010, 10, 3934–3953. [CrossRef] [PubMed]
    • (2010) Sensors , vol.10 , pp. 3934-3953
    • Lee, M.1    Gatton, T.M.2    Lee, K.K.3
  • 62
    • 84926219137 scopus 로고    scopus 로고
    • The diabetes assistant: A smartphone-based system for real-time control of blood glucose
    • Keith-Hynes, P.; Mize, B.; Robert, A.; Place, J. The diabetes assistant: A smartphone-based system for real-time control of blood glucose. Electronics 2014, 3, 609–623. [CrossRef]
    • (2014) Electronics , vol.3 , pp. 609-623
    • Keith-Hynes, P.1    Mize, B.2    Robert, A.3    Place, J.4
  • 63
    • 85107147086 scopus 로고    scopus 로고
    • Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway
    • Garnweidner-Holme, L.M.; Borgen, I.; Garitano, I.; Noll, J.; Lukasse, M. Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway. Healthcare 2015, 3, 310–323. [CrossRef] [PubMed]
    • (2015) Healthcare , vol.3 , pp. 310-323
    • Garnweidner-Holme, L.M.1    Borgen, I.2    Garitano, I.3    Noll, J.4    Lukasse, M.5
  • 64
    • 84901607859 scopus 로고    scopus 로고
    • Intelligent services for big data science
    • Dobre, C.; Xhafa, F. Intelligent services for big data science. Future Gener. Comput. Syst. 2014, 37, 267–281. [CrossRef]
    • (2014) Future Gener. Comput. Syst. , vol.37 , pp. 267-281
    • Dobre, C.1    Xhafa, F.2
  • 65
    • 84929502678 scopus 로고    scopus 로고
    • A big data approach for logistics trajectory discovery from RFID-enabled production data
    • Zhong, R.Y.; Huang, G.Q.; Lan, S.; Dai, Q.Y.; Chen, X.; Zhang, T. A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 2015, 165, 260–272. [CrossRef]
    • (2015) Int. J. Prod. Econ. , vol.165 , pp. 260-272
    • Zhong, R.Y.1    Huang, G.Q.2    Lan, S.3    Dai, Q.Y.4    Chen, X.5    Zhang, T.6
  • 66
    • 85049838544 scopus 로고    scopus 로고
    • accessed on 14 May 2018
    • Apache Kafka. Available online: https://kafka.apache.org/(accessed on 14 May 2018).
  • 67
    • 85049864394 scopus 로고    scopus 로고
    • accessed on 14 May 2018
    • MongoDB. Available online: https://www.mongodb.com/(accessed on 14 May 2018).
  • 68
    • 84859035700 scopus 로고    scopus 로고
    • Kafka: A distributed messaging system for log processing
    • Athens, Greece, 12–16 June
    • Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, Athens, Greece, 12–16 June 2011.
    • (2011) Proceedings of the Netdb
    • Kreps, J.1    Narkhede, N.2    Rao, J.3
  • 70
    • 85035016729 scopus 로고    scopus 로고
    • An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability
    • Syafrudin, M.; Fitriyani, N.L.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [CrossRef]
    • (2017) Sustainability , vol.9 , pp. 2139
    • Syafrudin, M.1    Fitriyani, N.L.2    Li, D.3    Alfian, G.4    Rhee, J.5    Kang, Y.S.6
  • 72
    • 84876089191 scopus 로고    scopus 로고
    • accessed on 14 May 2018
    • GATT Overview. Available online: https://www.bluetooth.com/specifications/gatt/generic-attributes-overview (accessed on 14 May 2018).
    • Overview
  • 73
    • 0024111497 scopus 로고
    • Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
    • Washington, DC, USA, 9 November 1988; Greenes, R.A., Ed.; IEEE Computer Society Press: Los Alamitos, CA, USA
    • Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications in Medical Care, Washington, DC, USA, 9 November 1988; Greenes, R.A., Ed.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1988; pp. 261–265.
    • (1988) Proceedings of the Symposium on Computer Applications in Medical Care , pp. 261-265
    • Smith, J.W.1    Everhart, J.E.2    Dickson, W.C.3    Knowler, W.C.4    Johannes, R.S.5
  • 74
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [CrossRef]
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 76
    • 84994742873 scopus 로고    scopus 로고
    • accessed on 14 May 2018
    • Diabetes Dataset. Available online: https://archive.ics.uci.edu/ml/datasets/diabetes (accessed on 14 May 2018).
    • Diabetes Dataset
  • 77
    • 85049836780 scopus 로고    scopus 로고
    • accessed on 14 May 2018
    • CGM Dataset. Available online: https://choens.github.io/blood-sugars/(accessed on 14 May 2018).
    • CGM Dataset
  • 78
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
    • (1997) Neural Comput , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 80
    • 3343024281 scopus 로고    scopus 로고
    • Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies
    • Klein, S.; Sheard, N.F.; Pi-Sunyer, X.; Daly, A.; Wylie-Rosett, J.; Kulkarni, K.; Clark, N.G. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies. Diabetes Care 2004, 27, 2067–2073. [CrossRef] [PubMed]
    • (2004) Diabetes Care , vol.27 , pp. 2067-2073
    • Klein, S.1    Sheard, N.F.2    Pi-Sunyer, X.3    Daly, A.4    Wylie-Rosett, J.5    Kulkarni, K.6    Clark, N.G.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.