-
2
-
-
32144448938
-
Standards of medical care in diabetes–2006
-
American Diabetes Association. Standards of medical care in diabetes–2006. Diabetes Care. 2006, 29 (Suppl. 1), s4–s42.
-
(2006)
Diabetes Care.
, vol.29
, pp. ss4-s42
-
-
-
3
-
-
85044284350
-
Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives
-
Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives. Biosensors 2018, 13, 24. [CrossRef] [PubMed]
-
(2018)
Biosensors
, vol.13
, pp. 24
-
-
Acciaroli, G.1
Vettoretti, M.2
Facchinetti, A.3
Sparacino, G.4
-
4
-
-
41149129233
-
Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis
-
Rubino, F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008, 31 (Suppl. 2), S290–S296. [CrossRef] [PubMed]
-
(2008)
Diabetes Care
, vol.31
, pp. S290-S296
-
-
Rubino, F.1
-
5
-
-
85000917701
-
-
accessed on 1 May 2018
-
Korean Diabetes Association. Diabetes Fact Sheet in Korea. 2016. Available online: http://www.diabetes.or. kr/temp/KDA_fact_sheet%202016.pdf (accessed on 1 May 2018).
-
(2016)
Diabetes Fact Sheet in Korea
-
-
-
6
-
-
85041291397
-
-
accessed on 1 May 2018
-
National Diabetes Statistics Report. Estimates of Diabetes and Its Burden in the United States. 2017. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report. pdf (accessed on 1 May 2018).
-
(2017)
Estimates of Diabetes and Its Burden in the United States
-
-
-
7
-
-
2342466734
-
Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030
-
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [CrossRef] [PubMed]
-
(2004)
Diabetes Care
, vol.27
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
Sicree, R.4
King, H.5
-
8
-
-
85039075397
-
Diabetes mellitus and stroke: A clinical update
-
Tun, N.N.; Arunagirinathan, G.; Munshi, S.K.; Pappachan, J.M. Diabetes mellitus and stroke: A clinical update. World J. Diabetes 2017, 8, 235–248. [CrossRef] [PubMed]
-
(2017)
World J. Diabetes
, vol.8
, pp. 235-248
-
-
Tun, N.N.1
Arunagirinathan, G.2
Munshi, S.K.3
Pappachan, J.M.4
-
9
-
-
85039732843
-
Introduction: Standards of medical care in diabetes—2018
-
American Diabetes Association. Introduction: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41 (Suppl. 1), S1–S2. [CrossRef]
-
(2018)
Diabetes Care
, vol.41
, pp. S1-S2
-
-
-
10
-
-
40749093652
-
Role of physical activity in diabetes management and prevention
-
Hayes, C.; Kriska, A. Role of physical activity in diabetes management and prevention. J. Am. Diet. Assoc. 2008, 108 (Suppl. 1), S19–S23. [CrossRef] [PubMed]
-
(2008)
J. Am. Diet. Assoc
, vol.108
, pp. S19-S23
-
-
Hayes, C.1
Kriska, A.2
-
11
-
-
84901808391
-
Prevention and management of type 2 diabetes: Dietary components and nutritional strategies
-
Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [CrossRef]
-
(2014)
Lancet
, vol.383
, pp. 1999-2007
-
-
Ley, S.H.1
Hamdy, O.2
Mohan, V.3
Hu, F.B.4
-
12
-
-
10244223555
-
Electrode systems for continuous monitoring in cardiovascular surgery
-
Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [CrossRef] [PubMed]
-
(1962)
Ann. N. Y. Acad. Sci.
, vol.102
, pp. 29-45
-
-
Clark, L.C.1
Lyons, C.2
-
13
-
-
49049113124
-
Electrochemical glucose sensors and their applications in diabetes management
-
Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [CrossRef] [PubMed]
-
(2008)
Chem. Rev.
, vol.108
, pp. 2482-2505
-
-
Heller, A.1
Feldman, B.2
-
14
-
-
85027552369
-
Glucose sensing for diabetes monitoring: Recent developments
-
Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 1866
-
-
Bruen, D.1
Delaney, C.2
Florea, L.3
Diamond, D.4
-
16
-
-
77957222420
-
Use of sensors in the treatment and follow-up of patients with diabetes mellitus
-
Torres, I.; Baena, M.G.; Cayon, M.; Ortego-Rojo, J.; Aguilar-Diosdado, M. Use of sensors in the treatment and follow-up of patients with diabetes mellitus. Sensors 2010, 10, 7404–7420. [CrossRef] [PubMed]
-
(2010)
Sensors
, vol.10
, pp. 7404-7420
-
-
Torres, I.1
Baena, M.G.2
Cayon, M.3
Ortego-Rojo, J.4
Aguilar-Diosdado, M.5
-
17
-
-
85044655258
-
Towards an ICT-based platform for type 1 diabetes mellitus management
-
Rodríguez-Rodríguez, I.; Zamora-Izquierdo, M.-Á.; Rodríguez, J.-V. Towards an ICT-based platform for type 1 diabetes mellitus management. Appl. Sci. 2018, 8, 511. [CrossRef]
-
(2018)
Appl. Sci.
, vol.8
, pp. 511
-
-
Rodríguez-Rodríguez, I.1
Zamora-Izquierdo, M.-Á.2
Rodríguez, J.-V.3
-
18
-
-
84913591472
-
Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things
-
Nieminen, J.; Gomez, C.; Isomaki, M.; Savolainen, T.; Patil, B.; Shelby, Z.; Xi, M.; Oller, J. Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things. IEEE Netw. 2014, 28, 83–90. [CrossRef]
-
(2014)
IEEE Netw
, vol.28
, pp. 83-90
-
-
Nieminen, J.1
Gomez, C.2
Isomaki, M.3
Savolainen, T.4
Patil, B.5
Shelby, Z.6
Xi, M.7
Oller, J.8
-
19
-
-
77649107719
-
Applications, challenges, and prospective in emerging body area networking technologies
-
Patel, M.; Wang, J. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun. 2010, 17, 80–88. [CrossRef]
-
(2010)
IEEE Wirel Commun
, vol.17
, pp. 80-88
-
-
Patel, M.1
Wang, J.2
-
21
-
-
84867006336
-
Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology
-
Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [CrossRef]
-
(2012)
Sensors
, vol.12
, pp. 11734-11753
-
-
Gomez, C.1
Oller, J.2
Paradells, J.3
-
22
-
-
84901334775
-
ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives
-
Fahim, M.; Idris, M.; Ali, R.; Nugent, C.; Kang, B.; Huh, E.N.; Lee, S. ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives. Sensors 2014, 14, 9313–9329. [CrossRef] [PubMed]
-
(2014)
Sensors
, vol.14
, pp. 9313-9329
-
-
Fahim, M.1
Idris, M.2
Ali, R.3
Nugent, C.4
Kang, B.5
Huh, E.N.6
Lee, S.7
-
23
-
-
85040036826
-
System framework for cardiovascular disease prediction based on big data technology
-
Han, S.H.; Kim, K.O.; Cha, E.J.; Kim, K.A.; Shon, H.S. System framework for cardiovascular disease prediction based on big data technology. Symmetry 2017, 9, 293. [CrossRef]
-
(2017)
Symmetry
, vol.9
, pp. 293
-
-
Han, S.H.1
Kim, K.O.2
Cha, E.J.3
Kim, K.A.4
Shon, H.S.5
-
24
-
-
85046104661
-
Big data analysis for personalized health activities: Machine learning processing for automatic keyword extraction approach
-
Huh, J.H. Big data analysis for personalized health activities: Machine learning processing for automatic keyword extraction approach. Symmetry 2018, 10, 93. [CrossRef]
-
(2018)
Symmetry
, vol.10
, pp. 93
-
-
Huh, J.H.1
-
25
-
-
84866773389
-
Sensor data storage performance: SQL or NoSQL, physical or virtual
-
Honolulu, HI, USA, 24–29 June
-
Van der Veen, J.S.; Van der Waaij, B.; Meijer, R.J. Sensor data storage performance: SQL or NoSQL, physical or virtual. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 431–438.
-
(2012)
Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing
, pp. 431-438
-
-
van der Veen, J.S.1
van der Waaij, B.2
Meijer, R.J.3
-
26
-
-
85002263449
-
Evaluation of relational and NoSQL database architectures to manage genomic annotations
-
Schulz, W.L.; Nelson, B.G.; Felker, D.K.; Durant, T.J.S.; Torres, R. Evaluation of relational and NoSQL database architectures to manage genomic annotations. J. Biomed. Inform. 2016, 64, 288–295. [CrossRef] [PubMed]
-
(2016)
J. Biomed. Inform.
, vol.64
, pp. 288-295
-
-
Schulz, W.L.1
Nelson, B.G.2
Felker, D.K.3
Durant, T.J.S.4
Torres, R.5
-
27
-
-
85016485953
-
NoSQL real-time database performance comparison
-
Pereira, D.A.; Ourique de Morais, W.; Pignaton de Freitas, E. NoSQL real-time database performance comparison. Int. J. Parallel Emerg. Distrib. Syst. 2018, 33, 144–156. [CrossRef]
-
(2018)
Int. J. Parallel Emerg. Distrib. Syst.
, vol.33
, pp. 144-156
-
-
Pereira, D.A.1
Ourique de Morais, W.2
Pignaton de Freitas, E.3
-
28
-
-
85046470184
-
Evaluating the open source data containers for handling big geospatial raster data
-
Hu, F.; Xu, M.; Yang, J.; Liang, Y.; Cui, K.; Little, M.M.; Lynnes, C.S.; Duffy, D.Q.; Yang, C. Evaluating the open source data containers for handling big geospatial raster data. ISPRS Int. J. Geo-Inf. 2018, 7, 144. [CrossRef]
-
(2018)
ISPRS Int. J. Geo-Inf.
, vol.7
, pp. 144
-
-
Hu, F.1
Xu, M.2
Yang, J.3
Liang, Y.4
Cui, K.5
Little, M.M.6
Lynnes, C.S.7
Duffy, D.Q.8
Yang, C.9
-
29
-
-
84964912615
-
An effective model for store and retrieve big health data in cloud computing
-
Goli-Malekabadi, Z.; Sargolzaei-Javan, M.; Akbari, M.K. An effective model for store and retrieve big health data in cloud computing. Comput. Methods Prog. Biomed. 2016, 132, 75–82. [CrossRef] [PubMed]
-
(2016)
Comput. Methods Prog. Biomed.
, vol.132
, pp. 75-82
-
-
Goli-Malekabadi, Z.1
Sargolzaei-Javan, M.2
Akbari, M.K.3
-
30
-
-
84992391880
-
Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system
-
Nkenyereye, L.; Jang, J.-W. Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system. Procedia Comput. Sci. 2016, 98, 382–387. [CrossRef]
-
(2016)
Procedia Comput. Sci.
, vol.98
, pp. 382-387
-
-
Nkenyereye, L.1
Jang, J.-W.2
-
31
-
-
85029347697
-
Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
-
Maniruzzaman, M.; Kumar, N.; Menhazul, A.M.; Shaykhul, I.M.; Suri, H.S.; El-Baz, A.S.; Suri, J.S. Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Comput. Methods Programs Biomed. 2017, 152, 23–34. [CrossRef] [PubMed]
-
(2017)
Comput. Methods Programs Biomed.
, vol.152
, pp. 23-34
-
-
Maniruzzaman, M.1
Kumar, N.2
Menhazul, A.M.3
Shaykhul, I.M.4
Suri, H.S.5
El-Baz, A.S.6
Suri, J.S.7
-
32
-
-
85007206682
-
SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification
-
Cheruku, R.; Edla, D.R.; Kuppili, V. SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification. Comput. Biol. Med. 2017, 81, 79–92. [CrossRef] [PubMed]
-
(2017)
Comput. Biol. Med.
, vol.81
, pp. 79-92
-
-
Cheruku, R.1
Edla, D.R.2
Kuppili, V.3
-
33
-
-
85043505447
-
Type 2 diabetes mellitus prediction model based on data mining
-
Wu, H.; Yang, S.; Huang, Z.; He, J.; Wang, X. Type 2 diabetes mellitus prediction model based on data mining. Inform. Med. Unlocked 2018, 10, 100–107. [CrossRef]
-
(2018)
Inform. Med. Unlocked
, vol.10
, pp. 100-107
-
-
Wu, H.1
Yang, S.2
Huang, Z.3
He, J.4
Wang, X.5
-
34
-
-
84872837690
-
Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
-
Meng, X.; Huang, Y.; Rao, D.; Zhang, Q.; Liu, Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J. Med. Sci. 2013, 29, 93–99. [CrossRef] [PubMed]
-
(2013)
Kaohsiung J. Med. Sci.
, vol.29
, pp. 93-99
-
-
Meng, X.1
Huang, Y.2
Rao, D.3
Zhang, Q.4
Liu, Q.5
-
35
-
-
84994275591
-
Performance analysis of data mining classification techniques to predict diabetes
-
Perveen, S.; Shahbaz, M.; Guergachi, A.; Keshavjee, K. Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput. Sci. 2016, 82, 115–121. [CrossRef]
-
(2016)
Procedia Comput. Sci.
, vol.82
, pp. 115-121
-
-
Perveen, S.1
Shahbaz, M.2
Guergachi, A.3
Keshavjee, K.4
-
36
-
-
84962885345
-
Comparison of classifiers for the risk of diabetes prediction
-
Nai-arun, N.; Moungmai, R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput. Sci. 2015, 69, 132–142. [CrossRef]
-
(2015)
Procedia Comput. Sci.
, vol.69
, pp. 132-142
-
-
Nai-Arun, N.1
Moungmai, R.2
-
37
-
-
34247372642
-
Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
-
Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [CrossRef] [PubMed]
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, pp. 931-937
-
-
Sparacino, G.1
Zanderigo, F.2
Corazza, S.3
Maran, A.4
Facchinetti, A.5
Cobelli, C.6
-
38
-
-
85049847701
-
-
Modern Artificial Intelligence for Health Analytics, accessed on 1 May 2018
-
Plis, K.; Bunescu, R.; Marling, C.; Shubrook, J.; Schwartz, F. A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management. AAAI Workshops. Modern Artificial Intelligence for Health Analytics. Available online: https://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8737 (accessed on 1 May 2018).
-
A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management. AAAI Workshops
-
-
Plis, K.1
Bunescu, R.2
Marling, C.3
Shubrook, J.4
Schwartz, F.5
-
39
-
-
84999863133
-
Effects of external factors in CGM sensor glucose concentration prediction
-
Ahmed, H.B.; Serener, A. Effects of external factors in CGM sensor glucose concentration prediction. Procedia Comput. Sci. 2016, 102, 623–629. [CrossRef]
-
(2016)
Procedia Comput. Sci.
, vol.102
, pp. 623-629
-
-
Ahmed, H.B.1
Serener, A.2
-
40
-
-
85044099313
-
Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
-
Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [CrossRef]
-
(2018)
Biocybern. Biomed. Eng.
, vol.38
, pp. 362-372
-
-
Hamdi, T.1
Ali, J.B.2
Di Costanzo, V.3
Fnaiech, F.4
Moreau, E.5
Ginoux, J.6
-
41
-
-
77953494285
-
Glucose biosensors: An overview of use in clinical practice
-
Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [CrossRef] [PubMed]
-
(2010)
Sensors
, vol.10
, pp. 4558-4576
-
-
Yoo, E.H.1
Lee, S.Y.2
-
42
-
-
84868251461
-
Italian contributions to the development of continuous glucose monitoring sensors for diabetes management
-
Sparacino, G.; Zanon, M.; Facchinetti, A.; Zecchin, C.; Maran, A.; Cobelli, C. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors 2012, 12, 13753–13780. [CrossRef] [PubMed]
-
(2012)
Sensors
, vol.12
, pp. 13753-13780
-
-
Sparacino, G.1
Zanon, M.2
Facchinetti, A.3
Zecchin, C.4
Maran, A.5
Cobelli, C.6
-
43
-
-
30944465397
-
A comparison of blood glucose meters in Australia
-
Cohen, M.; Boyle, E.; Delaney, C.; Shaw, J. A comparison of blood glucose meters in Australia. Diabetes Res. Clin. Pract. 2006, 71, 113–118. [CrossRef] [PubMed]
-
(2006)
Diabetes Res. Clin. Pract.
, vol.71
, pp. 113-118
-
-
Cohen, M.1
Boyle, E.2
Delaney, C.3
Shaw, J.4
-
44
-
-
33748412631
-
Evaluation of factors affecting CGMS calibration
-
Buckingham, B.A.; Kollman, C.; Beck, R.; Kalajian, A.; Fiallo-Scharer, R.; Tansey, M.J.; Fox, L.A.; Wilson, D.M.; Weinzimer, S.A.; Ruedy, K.J.; et al. Evaluation of factors affecting CGMS calibration. Diabetes Technol. Ther. 2006, 8, 318–325. [PubMed]
-
(2006)
Diabetes Technol. Ther.
, vol.8
, pp. 318-325
-
-
Buckingham, B.A.1
Kollman, C.2
Beck, R.3
Kalajian, A.4
Fiallo-Scharer, R.5
Tansey, M.J.6
Fox, L.A.7
Wilson, D.M.8
Weinzimer, S.A.9
Ruedy, K.J.10
-
45
-
-
85011924188
-
What is new in diabetes technology?
-
Marvicsin, D.; Jennings, P.; Ziegler-Bezaire, D. What is new in diabetes technology? J. Nurse Pract. 2017, 13, 205–209. [CrossRef]
-
(2017)
J. Nurse Pract.
, vol.13
, pp. 205-209
-
-
Marvicsin, D.1
Jennings, P.2
Ziegler-Bezaire, D.3
-
46
-
-
77955298774
-
The Internet of Things for ambient assisted living
-
Las Vegas, NV, USA, 12–14 April
-
Dohr, A.; Modre-Opsrian, R.; Drobics, M.; Hayn, D.; Schreier, G. The Internet of Things for ambient assisted living. In Proceedings of the 7th International Conference on Information Technology: New Generations ITNG 2010, Las Vegas, NV, USA, 12–14 April 2010; pp. 804–809.
-
(2010)
Proceedings of the 7Th International Conference on Information Technology: New Generations ITNG 2010
, pp. 804-809
-
-
Dohr, A.1
Modre-Opsrian, R.2
Drobics, M.3
Hayn, D.4
Schreier, G.5
-
47
-
-
84861997111
-
Internet of Things: Vision, applications and research challenges
-
Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of Things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]
-
(2012)
Ad Hoc Netw
, vol.10
, pp. 1497-1516
-
-
Miorandi, D.1
Sicari, S.2
de Pellegrini, F.3
Chlamtac, I.4
-
48
-
-
84992343500
-
On-line blood glucose level calculation
-
Koutny, T.; Krcma, M.; Kohout, J.; Jezek, P.; Varnuskova, J.; Vcelak, P.; Strnadek, J. On-line blood glucose level calculation. Procedia Comput. Sci. 2016, 98, 228–235. [CrossRef]
-
(2016)
Procedia Comput. Sci.
, vol.98
, pp. 228-235
-
-
Koutny, T.1
Krcma, M.2
Kohout, J.3
Jezek, P.4
Varnuskova, J.5
Vcelak, P.6
Strnadek, J.7
-
49
-
-
85020030453
-
Location-enhanced activity recognition in indoor environments using off the shelf smart watch technology and BLE beacons
-
Filippoupolitis, A.; Oliff, W.; Takand, B.; Loukas, G. Location-enhanced activity recognition in indoor environments using off the shelf smart watch technology and BLE beacons. Sensors 2017, 17, 1230. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 1230
-
-
Filippoupolitis, A.1
Oliff, W.2
Takand, B.3
Loukas, G.4
-
50
-
-
85044342269
-
Multi-residential activity labelling in smart homes with wearable tags using BLE technology
-
Mokhtari, G.; Anvari-Moghaddam, A.; Zhang, Q.; Karunanithi, M. Multi-residential activity labelling in smart homes with wearable tags using BLE technology. Sensors 2018, 18, 908. [CrossRef] [PubMed]
-
(2018)
Sensors
, vol.18
, pp. 908
-
-
Mokhtari, G.1
Anvari-Moghaddam, A.2
Zhang, Q.3
Karunanithi, M.4
-
51
-
-
85046651306
-
A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages
-
Wang, S.-S. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages. Sensors 2018, 18, 1442. [CrossRef] [PubMed]
-
(2018)
Sensors
, vol.18
, pp. 1442
-
-
Wang, S.-S.1
-
52
-
-
84985030740
-
BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario
-
51–59
-
Gentili, M.; Sannino, R.; Petracca, M. BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario. Comput. Commun. 2016, 89–90, 51–59. [CrossRef]
-
(2016)
Comput. Commun.
, pp. 89-90
-
-
Gentili, M.1
Sannino, R.2
Petracca, M.3
-
53
-
-
85046167539
-
Bluetooth gas sensing module combined with smartphones for air quality monitoring
-
Suárez, J.I.; Arroyo, P.; Lozano, J.; Herrero, J.L.; Padilla, M. Bluetooth gas sensing module combined with smartphones for air quality monitoring. Chemosphere 2018, 205, 618–626. [CrossRef] [PubMed]
-
(2018)
Chemosphere
, vol.205
, pp. 618-626
-
-
Suárez, J.I.1
Arroyo, P.2
Lozano, J.3
Herrero, J.L.4
Padilla, M.5
-
54
-
-
84949922277
-
Hu, F. Bluetooth low energy for wearable sensor-based healthcare systems
-
Seattle, WA, USA, 8–10 October
-
Zhang, T.; Lu, J.; Hu, F. Bluetooth low energy for wearable sensor-based healthcare systems. In Proceedings of the 2014 Helath Innovations and Point-of-Care Technologies Conference, Seattle, WA, USA, 8–10 October 2014; pp. 251–254.
-
(2014)
Proceedings of the 2014 Helath Innovations and Point-Of-Care Technologies Conference
, pp. 251-254
-
-
Zhang, T.1
Lu, J.2
-
55
-
-
77955478147
-
Bluetooth low energy: Wireless connectivity for medical monitoring
-
Omre, A.H. Bluetooth low energy: Wireless connectivity for medical monitoring. J. Diabetes Sci. Technol. 2010, 4, 457–463. [CrossRef] [PubMed]
-
(2010)
J. Diabetes Sci. Technol.
, vol.4
, pp. 457-463
-
-
Omre, A.H.1
-
56
-
-
84969548952
-
Wearable Noncontact Armband for Mobile ECG Monitoring System
-
Rachim, V.P.; Chung, W.Y. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [CrossRef] [PubMed]
-
(2016)
IEEE Trans. Biomed. Circuits Syst.
, vol.10
, pp. 1112-1118
-
-
Rachim, V.P.1
Chung, W.Y.2
-
57
-
-
85031292846
-
An IoT-based computational framework for healthcare monitoring in mobile environments
-
Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J. An IoT-based computational framework for healthcare monitoring in mobile environments. Sensors 2017, 17, 2302. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 2302
-
-
Mora, H.1
Gil, D.2
Terol, R.M.3
Azorín, J.4
Szymanski, J.5
-
58
-
-
84953320624
-
Performance of the first combined smartwatch and smartphone diabetes diary application study
-
Arsand, E.; Muzny, M.; Bradway, M.; Muzik, J.; Hartvigsen, G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diabetes Sci. Technol. 2015, 9, 556–563. [CrossRef] [PubMed]
-
(2015)
J. Diabetes Sci. Technol.
, vol.9
, pp. 556-563
-
-
Arsand, E.1
Muzny, M.2
Bradway, M.3
Muzik, J.4
Hartvigsen, G.5
-
59
-
-
85029010171
-
Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment
-
Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017, 6, 65. [CrossRef]
-
(2017)
Electronics
, vol.6
, pp. 65
-
-
Cappon, G.1
Acciaroli, G.2
Vettoretti, M.3
Facchinetti, A.4
Sparacino, G.5
-
60
-
-
84891795089
-
On the capability of smartphones to perform as communication gateways in medical wireless personal area networks
-
Morón, M.J.; Luque, R.; Casilari, E. On the capability of smartphones to perform as communication gateways in medical wireless personal area networks. Sensors 2014, 14, 575–594. [CrossRef] [PubMed]
-
(2014)
Sensors
, vol.14
, pp. 575-594
-
-
Morón, M.J.1
Luque, R.2
Casilari, E.3
-
61
-
-
77951752358
-
A monitoring and advisory system for diabetes patient management using a rule-based method and KNN
-
Lee, M.; Gatton, T.M.; Lee, K.K. A monitoring and advisory system for diabetes patient management using a rule-based method and KNN. Sensors 2010, 10, 3934–3953. [CrossRef] [PubMed]
-
(2010)
Sensors
, vol.10
, pp. 3934-3953
-
-
Lee, M.1
Gatton, T.M.2
Lee, K.K.3
-
62
-
-
84926219137
-
The diabetes assistant: A smartphone-based system for real-time control of blood glucose
-
Keith-Hynes, P.; Mize, B.; Robert, A.; Place, J. The diabetes assistant: A smartphone-based system for real-time control of blood glucose. Electronics 2014, 3, 609–623. [CrossRef]
-
(2014)
Electronics
, vol.3
, pp. 609-623
-
-
Keith-Hynes, P.1
Mize, B.2
Robert, A.3
Place, J.4
-
63
-
-
85107147086
-
Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway
-
Garnweidner-Holme, L.M.; Borgen, I.; Garitano, I.; Noll, J.; Lukasse, M. Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway. Healthcare 2015, 3, 310–323. [CrossRef] [PubMed]
-
(2015)
Healthcare
, vol.3
, pp. 310-323
-
-
Garnweidner-Holme, L.M.1
Borgen, I.2
Garitano, I.3
Noll, J.4
Lukasse, M.5
-
64
-
-
84901607859
-
Intelligent services for big data science
-
Dobre, C.; Xhafa, F. Intelligent services for big data science. Future Gener. Comput. Syst. 2014, 37, 267–281. [CrossRef]
-
(2014)
Future Gener. Comput. Syst.
, vol.37
, pp. 267-281
-
-
Dobre, C.1
Xhafa, F.2
-
65
-
-
84929502678
-
A big data approach for logistics trajectory discovery from RFID-enabled production data
-
Zhong, R.Y.; Huang, G.Q.; Lan, S.; Dai, Q.Y.; Chen, X.; Zhang, T. A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 2015, 165, 260–272. [CrossRef]
-
(2015)
Int. J. Prod. Econ.
, vol.165
, pp. 260-272
-
-
Zhong, R.Y.1
Huang, G.Q.2
Lan, S.3
Dai, Q.Y.4
Chen, X.5
Zhang, T.6
-
66
-
-
85049838544
-
-
accessed on 14 May 2018
-
Apache Kafka. Available online: https://kafka.apache.org/(accessed on 14 May 2018).
-
-
-
-
67
-
-
85049864394
-
-
accessed on 14 May 2018
-
MongoDB. Available online: https://www.mongodb.com/(accessed on 14 May 2018).
-
-
-
-
68
-
-
84859035700
-
Kafka: A distributed messaging system for log processing
-
Athens, Greece, 12–16 June
-
Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, Athens, Greece, 12–16 June 2011.
-
(2011)
Proceedings of the Netdb
-
-
Kreps, J.1
Narkhede, N.2
Rao, J.3
-
69
-
-
85030771090
-
Benchmarking real-time vehicle data streaming models for a Smart City
-
Fernández-Rodríguez, J.Y.; Álvarez-García, J.A.; Fisteus, J.A.; Luaces, M.R.; Magaña, V.C. Benchmarking real-time vehicle data streaming models for a Smart City. Inf. Syst. 2017, 72, 62–76. [CrossRef]
-
(2017)
Inf. Syst.
, vol.72
, pp. 62-76
-
-
Fernández-Rodríguez, J.Y.1
Álvarez-García, J.A.2
Fisteus, J.A.3
Luaces, M.R.4
Magaña, V.C.5
-
70
-
-
85035016729
-
An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability
-
Syafrudin, M.; Fitriyani, N.L.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [CrossRef]
-
(2017)
Sustainability
, vol.9
, pp. 2139
-
-
Syafrudin, M.1
Fitriyani, N.L.2
Li, D.3
Alfian, G.4
Rhee, J.5
Kang, Y.S.6
-
71
-
-
84990941766
-
-
3rd ed.; Morgan Kaufmann Publishers: Burlington, MA, USA
-
Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers: Burlington, MA, USA, 2011.
-
(2011)
Ata Mining: Concepts and Techniques
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
72
-
-
84876089191
-
-
accessed on 14 May 2018
-
GATT Overview. Available online: https://www.bluetooth.com/specifications/gatt/generic-attributes-overview (accessed on 14 May 2018).
-
Overview
-
-
-
73
-
-
0024111497
-
Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
-
Washington, DC, USA, 9 November 1988; Greenes, R.A., Ed.; IEEE Computer Society Press: Los Alamitos, CA, USA
-
Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications in Medical Care, Washington, DC, USA, 9 November 1988; Greenes, R.A., Ed.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1988; pp. 261–265.
-
(1988)
Proceedings of the Symposium on Computer Applications in Medical Care
, pp. 261-265
-
-
Smith, J.W.1
Everhart, J.E.2
Dickson, W.C.3
Knowler, W.C.4
Johannes, R.S.5
-
74
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [CrossRef]
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
76
-
-
84994742873
-
-
accessed on 14 May 2018
-
Diabetes Dataset. Available online: https://archive.ics.uci.edu/ml/datasets/diabetes (accessed on 14 May 2018).
-
Diabetes Dataset
-
-
-
77
-
-
85049836780
-
-
accessed on 14 May 2018
-
CGM Dataset. Available online: https://choens.github.io/blood-sugars/(accessed on 14 May 2018).
-
CGM Dataset
-
-
-
78
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
-
(1997)
Neural Comput
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
79
-
-
84994372704
-
Physical Activity/exercise and diabetes: A position statement of the American Diabetes Association
-
Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [CrossRef] [PubMed]
-
(2016)
Diabetes Care
, vol.39
, pp. 2065-2079
-
-
Colberg, S.R.1
Sigal, R.J.2
Yardley, J.E.3
Riddell, M.C.4
Dunstan, D.W.5
Dempsey, P.C.6
Horton, E.S.7
Castorino, K.8
Tate, D.F.9
-
80
-
-
3343024281
-
Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies
-
Klein, S.; Sheard, N.F.; Pi-Sunyer, X.; Daly, A.; Wylie-Rosett, J.; Kulkarni, K.; Clark, N.G. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies. Diabetes Care 2004, 27, 2067–2073. [CrossRef] [PubMed]
-
(2004)
Diabetes Care
, vol.27
, pp. 2067-2073
-
-
Klein, S.1
Sheard, N.F.2
Pi-Sunyer, X.3
Daly, A.4
Wylie-Rosett, J.5
Kulkarni, K.6
Clark, N.G.7
|