메뉴 건너뛰기




Volumn 2, Issue 3W4, 2015, Pages 79-86

Spatial-temporal conditional random fields crop classification from terrasar-x images

Author keywords

Conditional probability; Conditional Random Fields (CRF); Phenology; Spatial temporal

Indexed keywords


EID: 85048909400     PISSN: 21949042     EISSN: 21949050     Source Type: Conference Proceeding    
DOI: 10.5194/isprsannals-II-3-W4-79-2015     Document Type: Conference Paper
Times cited : (10)

References (44)
  • 1
    • 80052431587 scopus 로고    scopus 로고
    • Land use classification with high-resolution satellite radar for estimating the impacts of land use change on the quality of ecosystem services
    • IAPRS, Vienna, Austria
    • Bargiel, D., Herrmann, S., Lohmann, P. and Sörgel, U., 2010. Land use classification with high-resolution satellite radar for estimating the impacts of land use change on the quality of ecosystem services. In: ISPRS TC VII Symposium: 100 Years ISPRS, Vol. XXXVIII, IAPRS, Vienna, Austria, pp. 68-73.
    • (2010) ISPRS TC VII Symposium: 100 Years ISPRS , vol.XXXVIII , pp. 68-73
    • Bargiel, D.1    Herrmann, S.2    Lohmann, P.3    Sörgel, U.4
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001. Random forests. Machine Learning 45(1), pp. 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 85086761186 scopus 로고    scopus 로고
    • Building Extraction from Polarimetric SAR Data using Mean Shift and Conditional Random Fields
    • Friedrichshafen, Germany
    • He, W., Jäger, M., Reigber, A. and Hellwich, O., 2008. Building Extraction from Polarimetric SAR Data using Mean Shift and Conditional Random Fields. In: EUSAR, Friedrichshafen, Germany, pp. 1-4.
    • (2008) EUSAR , pp. 1-4
    • He, W.1    Jäger, M.2    Reigber, A.3    Hellwich, O.4
  • 11
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • Washington, DC, USA
    • He, X., Zemel, R. and Carreira-Perpiñán, M., 2004. Multiscale conditional random fields for image labeling. In: CVPR, Vol. 2, Washington, DC, USA, pp. 695-702.
    • (2004) CVPR , vol.2 , pp. 695-702
    • He, X.1    Zemel, R.2    Carreira-Perpiñán, M.3
  • 12
    • 84923883388 scopus 로고    scopus 로고
    • Multitemporal Crop Type Classification Using Conditional Random Fields and Rapid-Eye Data
    • Hannover, Germany
    • Hoberg, T. and Müller, S., 2011. Multitemporal Crop Type Classification Using Conditional Random Fields and Rapid-Eye Data. In: ISPRS, Hannover, Germany.
    • (2011) ISPRS
    • Hoberg, T.1    Müller, S.2
  • 13
    • 79955525809 scopus 로고    scopus 로고
    • Classification of settlement areas in remote sensing imagery using conditional random fields
    • Vienna, Austria
    • Hoberg, T. and Rottensteiner, F., 2010. Classification of settlement areas in remote sensing imagery using conditional random fields. In: ISPRS TC VII Symposium-100 Years ISPRS, Vienna, Austria.
    • (2010) ISPRS TC VII Symposium-100 Years ISPRS
    • Hoberg, T.1    Rottensteiner, F.2
  • 15
    • 84856646912 scopus 로고    scopus 로고
    • Classification of multitemporal remote sensing data of different resolution using Conditional Random Fields
    • Hoberg, T., Rottensteiner, F. and Heipke, C., 2011. Classification of multitemporal remote sensing data of different resolution using Conditional Random Fields. In: ICCV, pp. 235-242.
    • (2011) ICCV , pp. 235-242
    • Hoberg, T.1    Rottensteiner, F.2    Heipke, C.3
  • 16
    • 84906326713 scopus 로고    scopus 로고
    • Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery
    • Hoberg, T., Rottensteiner, F., Feitosa, R. and Heipke, C., 2015. Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing 53(2), pp. 659-673.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.2 , pp. 659-673
    • Hoberg, T.1    Rottensteiner, F.2    Feitosa, R.3    Heipke, C.4
  • 17
    • 0026897311 scopus 로고
    • Classification with spatiotemporal interpixel class dependency contexts
    • Jeon, B. and Landgrebe, D., 1992. Classification with spatiotemporal interpixel class dependency contexts. IEEE Transactions on Geoscience and Remote Sensing 30(4), pp. 663-672.
    • (1992) IEEE Transactions on Geoscience and Remote Sensing , vol.30 , Issue.4 , pp. 663-672
    • Jeon, B.1    Landgrebe, D.2
  • 19
    • 84897766087 scopus 로고    scopus 로고
    • Detection of built-up area in optical and synthetic aperture radar images using conditional random fields
    • Kenduiywo, B. K., Tolpekin, V. A. and Stein, A., 2014. Detection of built-up area in optical and synthetic aperture radar images using conditional random fields. Journal of Applied Remote Sensing 8(1), pp. 083672-1-083672-18.
    • (2014) Journal of Applied Remote Sensing , vol.8 , Issue.1 , pp. 0836721-08367218
    • Kenduiywo, B.K.1    Tolpekin, V.A.2    Stein, A.3
  • 20
    • 77956335474 scopus 로고    scopus 로고
    • Interpreting terrestrial images of urban scenes using discriminative random fields
    • Beijing, China
    • Korc, F. and Förstner,W., 2008. Interpreting terrestrial images of urban scenes using discriminative random fields. In: ISPRS, Beijing, China, pp. 291-296.
    • (2008) ISPRS , pp. 291-296
    • Korc, F.1    Förstner, W.2
  • 21
    • 84886415062 scopus 로고    scopus 로고
    • A two-layer conditional random field for the classification of partially occluded objects
    • Kosov, S., Kohli, P., Rottensteiner, F. and Heipke, C., 2013. A two-layer conditional random field for the classification of partially occluded objects. ArXiv e-prints.
    • (2013) ArXiv E-prints
    • Kosov, S.1    Kohli, P.2    Rottensteiner, F.3    Heipke, C.4
  • 22
    • 77949298118 scopus 로고    scopus 로고
    • Iterated local search with Powell's method: A memetic algorithm for continuous global optimization
    • Kramer, O., 2010. Iterated local search with Powell's method: a memetic algorithm for continuous global optimization. Memetic Computing 2(1), pp. 69-83.
    • (2010) Memetic Computing , vol.2 , Issue.1 , pp. 69-83
    • Kramer, O.1
  • 24
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • San Francisco, CA, USA
    • Lafferty, J. D., McCallum, A. and Pereira, F., 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, Morgan Kaufmann, San Francisco, CA, USA, pp. 282-289.
    • (2001) ICML, Morgan Kaufmann , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.3
  • 26
    • 0003925908 scopus 로고    scopus 로고
    • Markov random field modeling in image analysis
    • Springer-Verlag, London
    • Li, S. Z., 2009. Markov random field modeling in image analysis. Advances in pattern recognition, 3rd edn, Springer-Verlag, London.
    • (2009) Advances in Pattern Recognition 3rd Edn
    • Li, S.Z.1
  • 27
    • 41249083722 scopus 로고    scopus 로고
    • Using local transition probability models in markov random fields for forest change detection
    • Liu, D., K., S., Townshend, J. and Gong, P., 2008. Using local transition probability models in markov random fields for forest change detection. Remote Sensing of Environment 112(5), pp. 2222-2231.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2222-2231
    • Liu, D.K.S.1    Townshend, J.2    Gong, P.3
  • 28
    • 33644753678 scopus 로고    scopus 로고
    • A spatial-temporal approach to monitoring forest disease spread using multitemporal high spatial resolution imagery
    • Liu, D., Kelly, M. and Gong, P., 2006. A spatial-temporal approach to monitoring forest disease spread using multitemporal high spatial resolution imagery. Remote Sensing of Environment 101(2), pp. 167-180.
    • (2006) Remote Sensing of Environment , vol.101 , Issue.2 , pp. 167-180
    • Liu, D.1    Kelly, M.2    Gong, P.3
  • 29
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D. and Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5), pp. 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 30
    • 67949104959 scopus 로고    scopus 로고
    • A Hybrid Conditional Random Field for Estimating the Underlying Ground Surface from Airborne LiDAR Data
    • Lu, W.-L., Murphy, K., Little, J., Sheffer, A. and Fu, H., 2009. A Hybrid Conditional Random Field for Estimating the Underlying Ground Surface From Airborne LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing 47(8), pp. 2913-2922.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2913-2922
    • Lu, W.-L.1    Murphy, K.2    Little, J.3    Sheffer, A.4    Fu, H.5
  • 31
    • 0344014352 scopus 로고    scopus 로고
    • A Markov random field approach to spatio-temporal contextual image classification
    • Melgani, F. and Serpico, S., 2003. A Markov random field approach to spatio-temporal contextual image classification. IEEE Transactions on Geoscience and Remote Sensing 41(11), pp. 2478-2487.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.11 , pp. 2478-2487
    • Melgani, F.1    Serpico, S.2
  • 32
    • 80955172246 scopus 로고    scopus 로고
    • Multitemporal region-based classification of high-resolution images by markov random fields and multiscale segmentation
    • Vancouver, Canada
    • Moser, G. and Serpico, S., 2011. Multitemporal region-based classification of high-resolution images by markov random fields and multiscale segmentation. In: IGARSS, Vancouver, Canada, pp. 102-105.
    • (2011) IGARSS , pp. 102-105
    • Moser, G.1    Serpico, S.2
  • 33
    • 84881358566 scopus 로고    scopus 로고
    • Classification of urban LiDAR data using conditional random field and random forests
    • Niemeyer, J., Rottensteiner, F. and Sörgel, U., 2013. Classification of urban LiDAR data using conditional random field and random forests. In: JURSE, pp. 139-142.
    • (2013) JURSE , pp. 139-142
    • Niemeyer, J.1    Rottensteiner, F.2    Sörgel, U.3
  • 35
    • 85060420614 scopus 로고    scopus 로고
    • OpenCV, 2014. Random Trees. http://docs.opencv.org/modules/ml/doc/ml.html. [Accessed: 20-11-2014]
    • (2014) Random Trees.
  • 36
    • 84886516209 scopus 로고    scopus 로고
    • CRFs for image classification
    • Carnegie Mellon University
    • Parikh, D. and Batra, D., 2008. CRFs for image classification. Technical report, Carnegie Mellon University.
    • (2008) Technical Report
    • Parikh, D.1    Batra, D.2
  • 37
    • 0029772671 scopus 로고    scopus 로고
    • A markov random field model for classification of multisource satellite imagery
    • Solberg, A. H. S., Taxt, T. and Jain, A., 1996. A markov random field model for classification of multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 34(1), pp. 100-113.
    • (1996) IEEE Transactions on Geoscience and Remote Sensing , vol.34 , Issue.1 , pp. 100-113
    • Solberg, A.H.S.1    Taxt, T.2    Jain, A.3
  • 38
    • 0018155973 scopus 로고
    • Bayesian Classification in a Time-Varying Environment
    • Swain, P. H., 1978. Bayesian Classification in a Time-Varying Environment. IEEE Transactions on Systems, Man and Cybernetics 8(12), pp. 879-883.
    • (1978) IEEE Transactions on Systems, Man and Cybernetics , vol.8 , Issue.12 , pp. 879-883
    • Swain, P.H.1
  • 42
    • 79957658054 scopus 로고    scopus 로고
    • Segmentbased building detection with conditional random fields
    • Munich, Germany
    • Wegner, J., Söergel, U. and Rosenhahn, B., 2011b. Segmentbased building detection with conditional random fields. In: JURSE, Munich, Germany.
    • (2011) JURSE
    • Wegner, J.1    Söergel, U.2    Rosenhahn, B.3
  • 43
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
    • Zhong, P. and Wang, R., 2007a. A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Transactions on Geoscience and Remote Sensing 45(12), pp. 3978-3988.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3978-3988
    • Zhong, P.1    Wang, R.2
  • 44
    • 34247473104 scopus 로고    scopus 로고
    • Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image
    • Zhong, P. and Wang, R., 2007b. Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image. IEEE Transactions on Geoscience and Remote Sensing 45(5), pp. 1469-1482.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1469-1482
    • Zhong, P.1    Wang, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.