메뉴 건너뛰기




Volumn 11, Issue 7, 2018, Pages 2473-2490

A novel system for content-based retrieval of single and multi-label high-dimensional remote sensing images

Author keywords

Multi Label image retrieval; remote sensing (RS); sparse reconstruction based retrieval (SRR); spatial description; spectral description

Indexed keywords

CONTENT BASED RETRIEVAL; IMAGE ANALYSIS; IMAGE RECONSTRUCTION; REMOTE SENSING;

EID: 85048876227     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2018.2832985     Document Type: Article
Times cited : (64)

References (35)
  • 1
    • 85041829874 scopus 로고    scopus 로고
    • A novel system for content based retrieval of multi-label remote sensing images
    • O. E. Dai, B. Demir, B. Sankur, and L. Bruzzone, "A novel system for content based retrieval of multi-label remote sensing images, " in Proc. Int. Geosci. Remote Sens. Symp., 2017, pp. 1744-1747.
    • (2017) Proc. Int. Geosci. Remote Sens. Symp. , pp. 1744-1747
    • Dai, O.E.1    Demir, B.2    Sankur, B.3    Bruzzone, L.4
  • 2
    • 15744379715 scopus 로고    scopus 로고
    • Comparative studies on similarity measures for remote sensing image retrieval
    • The Hague, Netherlands
    • Q. Bao and P. Guo, "Comparative studies on similarity measures for remote sensing image retrieval, " in Proc. IEEE Int. Conf. Syst., Man Cybern., The Hague, Netherlands, 2004, pp. 1112-1116.
    • (2004) Proc. IEEE Int. Conf. Syst., Man Cybern. , pp. 1112-1116
    • Bao, Q.1    Guo, P.2
  • 3
    • 0036400412 scopus 로고    scopus 로고
    • Retrieval of remotely sensed imagery using spectral information content
    • Toronto, ON, Canada
    • T. Bretschneider, R. Cavet, and O. Kao, "Retrieval of remotely sensed imagery using spectral information content, " in Proc. IEEE Int. Geosci. Remote Sens. Symp., Toronto, ON, Canada, 2002, pp. 2253-2255.
    • (2002) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 2253-2255
    • Bretschneider, T.1    Cavet, R.2    Kao, O.3
  • 5
    • 79955623044 scopus 로고    scopus 로고
    • Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases
    • May
    • G. Scott et al., "Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1603-1616, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1603-1616
    • Scott, G.1
  • 6
    • 33846314755 scopus 로고    scopus 로고
    • Local shape association based retrieval of infrared satellite images
    • Irvine, CA, USA
    • A. Ma and I. K. Sethi, "Local shape association based retrieval of infrared satellite images, " in Proc. IEEE Int. Symp. Multimedia, Irvine, CA, USA, 2005, pp. 551-557.
    • (2005) Proc. IEEE Int. Symp. Multimedia , pp. 551-557
    • Ma, A.1    Sethi, I.K.2
  • 7
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • Apr.
    • M. Ferecatu and N. Boujemaa, "Interactive remote-sensing image retrieval using active relevance feedback, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 8
    • 15944422186 scopus 로고    scopus 로고
    • Semantics-based satellite image retrieval using low-level features
    • Anchorage, AK, USA
    • Y. Li and T. Bretschneider, "Semantics-based satellite image retrieval using low-level features, " in Proc. IEEE Int. Geosci. Remote Sens. Symp., Anchorage, AK, USA, 2004, vol. 7, pp. 4406-4409.
    • (2004) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.7 , pp. 4406-4409
    • Li, Y.1    Bretschneider, T.2
  • 9
    • 7744241563 scopus 로고    scopus 로고
    • Remote sensing imagery retrieval based-on Gabor texture feature classification
    • Beijing, China
    • Y. Hongyu, L. Bicheng, and C. Wen, "Remote sensing imagery retrieval based-on Gabor texture feature classification, " in Proc. Int. Conf. Signal Process., Beijing, China, 2004, pp. 733-736.
    • (2004) Proc. Int. Conf. Signal Process. , pp. 733-736
    • Hongyu, Y.1    Bicheng, L.2    Wen, C.3
  • 10
    • 0030213052 scopus 로고    scopus 로고
    • Texture features for browsing and retrieval of image data
    • Aug.
    • B. S. Manjunath andW. Y. Ma, "Texture features for browsing and retrieval of image data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 837-842, Aug. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.8 , pp. 837-842
    • Manjunath, B.S.1    Ma, W.Y.2
  • 11
    • 0742320815 scopus 로고    scopus 로고
    • Using texture to analyze and manage large collections of remote sensed image and video data
    • Jan.
    • S. Newsam et al., "Using texture to analyze and manage large collections of remote sensed image and video data, " J. Appl. Opt., vol. 43, no. 2, pp. 210-217, Jan. 2004.
    • (2004) J. Appl. Opt. , vol.43 , Issue.2 , pp. 210-217
    • Newsam, S.1
  • 13
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Jul.
    • T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 14
    • 84942037053 scopus 로고    scopus 로고
    • Hashing-based scalable remote sensing image search and retrieval in large archives
    • Feb.
    • B. Demir and L. Bruzzone, "Hashing-based scalable remote sensing image search and retrieval in large archives, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 2, pp. 892-904, Feb. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.2 , pp. 892-904
    • Demir, B.1    Bruzzone, L.2
  • 15
    • 84896319674 scopus 로고    scopus 로고
    • Remote sensing image retrieval with global morphological texture descriptors
    • May
    • E. Aptoula, "Remote sensing image retrieval with global morphological texture descriptors, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 3023-3034, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 3023-3034
    • Aptoula, E.1
  • 16
    • 84872918592 scopus 로고    scopus 로고
    • Geographic image retrieval using local invariant features
    • Feb.
    • Y. Yang and S. Newsam, "Geographic image retrieval using local invariant features, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 818-832, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 818-832
    • Yang, Y.1    Newsam, S.2
  • 17
    • 80052899903 scopus 로고    scopus 로고
    • Multi-spectral SIFT for scene category recognition
    • Colorado Springs, CO, USA
    • M. Brown and S. Ssstrunk, "Multi-spectral SIFT for scene category recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, 2011, pp. 177-184.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 177-184
    • Brown, M.1    Ssstrunk, S.2
  • 23
    • 84921031076 scopus 로고    scopus 로고
    • A novel active learning method in relevance feedback for content based remote sensing image retrieval
    • May
    • B. Demir and L. Bruzzone, "A novel active learning method in relevance feedback for content based remote sensing image retrieval, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2323-2334, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2323-2334
    • Demir, B.1    Bruzzone, L.2
  • 24
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H Zhou, "ML-KNN: A lazy learning approach to multi-label learning, " Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 25
    • 3042597440 scopus 로고    scopus 로고
    • ML-KNN: Learning multi-label scene classification
    • M. R. Boutell et al., "ML-KNN: Learning multi-label scene classification, " Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, 2004.
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1
  • 26
    • 79951630478 scopus 로고    scopus 로고
    • Empirical study of multi-label classification methods for image annotation and retrieval
    • G. Nasierding and A. Z. Kouzani, "Empirical study of multi-label classification methods for image annotation and retrieval, " in Proc. Int. Conf. Digit. Image Comput., Tech. Appl., 2010, pp. 617-622.
    • (2010) Proc. Int. Conf. Digit. Image Comput., Tech. Appl. , pp. 617-622
    • Nasierding, G.1    Kouzani, A.Z.2
  • 28
    • 0036681029 scopus 로고    scopus 로고
    • Indexing chromatic and achromatic patterns for content-based colour image retrieval
    • G. Qiu, "Indexing chromatic and achromatic patterns for content-based colour image retrieval, " Pattern Recognit., vol. 35, no. 8, pp. 1675-1686, 2002.
    • (2002) Pattern Recognit. , vol.35 , Issue.8 , pp. 1675-1686
    • Qiu, G.1
  • 29
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints, " Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 33
  • 34
    • 84992304055 scopus 로고    scopus 로고
    • Feature extraction for patch-based classification of multispectral earth observation images
    • Jun.
    • F.-A. Georgescu, C. Vaduva, D. Raducanu, and M. Datcu, "Feature extraction for patch-based classification of multispectral earth observation images, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 865-869, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.6 , pp. 865-869
    • Georgescu, F.-A.1    Vaduva, C.2    Raducanu, D.3    Datcu, M.4
  • 35
    • 85030243593 scopus 로고    scopus 로고
    • Learning multiscale deep features for high-resolution satellite image scene classification
    • Jan.
    • Q. Liu et al., "Learning multiscale deep features for high-resolution satellite image scene classification, " IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 117-126, Jan. 2018.
    • (2018) IEEE Trans. Geosci. Remote Sens. , vol.56 , Issue.1 , pp. 117-126
    • Liu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.