메뉴 건너뛰기




Volumn 151, Issue , 2018, Pages 61-69

Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review

Author keywords

Decision making; Features extraction; Information fusion; Predictive modelling; Vegetation indices

Indexed keywords

ARTIFICIAL INTELLIGENCE; COST EFFECTIVENESS; CROPS; DECISION MAKING; DECISION SUPPORT SYSTEMS; ENVIRONMENTAL IMPACT; HYBRID SYSTEMS; INFORMATION FUSION; NITROGEN; OPERATING COSTS; PRECISION AGRICULTURE; REMOTE SENSING; SIGNAL PROCESSING;

EID: 85048488279     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2018.05.012     Document Type: Review
Times cited : (865)

References (141)
  • 1
    • 84962670222 scopus 로고    scopus 로고
    • Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data
    • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., Notarnicola, C., Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens., 7, 2015, 15841.
    • (2015) Remote Sens. , vol.7 , pp. 15841
    • Ali, I.1    Greifeneder, F.2    Stamenkovic, J.3    Neumann, M.4    Notarnicola, C.5
  • 2
    • 84882305948 scopus 로고    scopus 로고
    • Do plants need nitrate? The mechanisms by which nitrogen form affects plants
    • Andrews, M., Raven, J.A., Lea, P.J., Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 163 (2013), 174–199.
    • (2013) Ann. Appl. Biol. , vol.163 , pp. 174-199
    • Andrews, M.1    Raven, J.A.2    Lea, P.J.3
  • 3
    • 35748983819 scopus 로고    scopus 로고
    • A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field-cultivated corn
    • Apostol, S., Viau, A., Tremblay, N., A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field-cultivated corn. Can. J. Remote Sens. 33 (2007), 150–161.
    • (2007) Can. J. Remote Sens. , vol.33 , pp. 150-161
    • Apostol, S.1    Viau, A.2    Tremblay, N.3
  • 4
    • 84890119176 scopus 로고    scopus 로고
    • A review of wireless sensors and networks’ applications in agriculture
    • Aqeel-ur-Rehman, Abbasi, A.Z., Islam, N., Shaikh, Z.A., A review of wireless sensors and networks’ applications in agriculture. Comp. Stand. Interf. 36 (2014), 263–270.
    • (2014) Comp. Stand. Interf. , vol.36 , pp. 263-270
    • Aqeel-ur-Rehman1    Abbasi, A.Z.2    Islam, N.3    Shaikh, Z.A.4
  • 5
    • 80052269811 scopus 로고    scopus 로고
    • Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas
    • Barati, S., Rayegani, B., Saati, M., Sharifi, A., Nasri, M., Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt. J. Remote Sens. Space Sci. 14 (2011), 49–56.
    • (2011) Egypt. J. Remote Sens. Space Sci. , vol.14 , pp. 49-56
    • Barati, S.1    Rayegani, B.2    Saati, M.3    Sharifi, A.4    Nasri, M.5
  • 7
    • 85028199288 scopus 로고    scopus 로고
    • A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
    • Behmann, J., Mahlein, A., Rumpf, T., Römer, C., Plümer, L., A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Prec. Agric. 16 (2015), 239–260.
    • (2015) Prec. Agric. , vol.16 , pp. 239-260
    • Behmann, J.1    Mahlein, A.2    Rumpf, T.3    Römer, C.4    Plümer, L.5
  • 8
    • 84957879164 scopus 로고    scopus 로고
    • Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards
    • Bellvert, J., Marsal, J., Girona, J., Gonzalez-Dugo, V., Fereres, E., Ustin, S., Zarco-Tejada, P., Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sens., 8, 2016, 39.
    • (2016) Remote Sens. , vol.8 , pp. 39
    • Bellvert, J.1    Marsal, J.2    Girona, J.3    Gonzalez-Dugo, V.4    Fereres, E.5    Ustin, S.6    Zarco-Tejada, P.7
  • 9
    • 0000153126 scopus 로고
    • Measuring the color of growing turf with a reflectance spectrophotometer
    • Birth, G.S., McVey, G.R., Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 60 (1968), 640–643.
    • (1968) Agron. J. , vol.60 , pp. 640-643
    • Birth, G.S.1    McVey, G.R.2
  • 10
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning (Information Science and Statistics)
    • Springer-Verlag New York Inc
    • Bishop, C.M., Pattern Recognition and Machine Learning (Information Science and Statistics). 2006, Springer-Verlag, New York Inc.
    • (2006)
    • Bishop, C.M.1
  • 11
    • 0001610365 scopus 로고    scopus 로고
    • Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectances: a comparison of statistical methods
    • Bolster, K.L., Martin, M.E., Aber, J.D., Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectances: a comparison of statistical methods. Can. J. For. Res. 26 (1996), 590–600.
    • (1996) Can. J. For. Res. , vol.26 , pp. 590-600
    • Bolster, K.L.1    Martin, M.E.2    Aber, J.D.3
  • 12
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton, D.K., Friedl, M.A., Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173 (2013), 74–84.
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 13
    • 84979916681 scopus 로고    scopus 로고
    • Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series
    • Bose, P., Kasabov, N.K., Bruzzone, L., Hartono, R.N., Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series. IEEE Trans. Geosci. Remote Sens. 54 (2016), 6563–6573.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 6563-6573
    • Bose, P.1    Kasabov, N.K.2    Bruzzone, L.3    Hartono, R.N.4
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 15
    • 85048482688 scopus 로고    scopus 로고
    • Introduction to Remote Sensing. fifth ed. Guildford Press.
    • Campbell, J.B., Wynne, R.H., 2011. Introduction to Remote Sensing. fifth ed. Guildford Press.
    • (2011)
    • Campbell, J.B.1    Wynne, R.H.2
  • 17
    • 84969922461 scopus 로고    scopus 로고
    • Developing a new crop circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain
    • Cao, Q., Miao, Y., Li, F., Gao, X., Liu, B., Lu, D., Chen, X., Developing a new crop circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Prec. Agric. 18 (2017), 2–18.
    • (2017) Prec. Agric. , vol.18 , pp. 2-18
    • Cao, Q.1    Miao, Y.2    Li, F.3    Gao, X.4    Liu, B.5    Lu, D.6    Chen, X.7
  • 18
    • 84979939287 scopus 로고    scopus 로고
    • A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data
    • Castaldi, F., Castrignanò A., Casa, R., A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data. Int. J. Remote Sens. 37 (2016), 4317–4336.
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 4317-4336
    • Castaldi, F.1    Castrignanò, A.2    Casa, R.3
  • 19
    • 77954819594 scopus 로고    scopus 로고
    • New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat
    • Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P., Li, B., New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 114 (2010), 1987–1997.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1987-1997
    • Chen, P.1    Haboudane, D.2    Tremblay, N.3    Wang, J.4    Vigneault, P.5    Li, B.6
  • 20
    • 45849096781 scopus 로고    scopus 로고
    • Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers
    • Chen, D., Suter, H., Islam, A., Edis, R., Freney, J.R., Walker, C.N., Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46 (2008), 289–301.
    • (2008) Soil Res. , vol.46 , pp. 289-301
    • Chen, D.1    Suter, H.2    Islam, A.3    Edis, R.4    Freney, J.R.5    Walker, C.N.6
  • 22
    • 0021644332 scopus 로고
    • Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications
    • Clark, R.N., Roush, T.L., Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res.: Solid Earth 89 (1984), 6329–6340.
    • (1984) J. Geophys. Res.: Solid Earth , vol.89 , pp. 6329-6340
    • Clark, R.N.1    Roush, T.L.2
  • 23
    • 33645712608 scopus 로고
    • Remote sensing in agriculture: an introductory review
    • Curran, P.J., Remote sensing in agriculture: an introductory review. J. Geogr. 86 (1987), 147–156.
    • (1987) J. Geogr. , vol.86 , pp. 147-156
    • Curran, P.J.1
  • 24
    • 84887817821 scopus 로고    scopus 로고
    • Managing the seeding rate to improve nitrogen-use efficiency of winter wheat
    • Dai, X., Zhou, X., Jia, D., Xiao, L., Kong, H., He, M., Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 154 (2013), 100–109.
    • (2013) Field Crops Res. , vol.154 , pp. 100-109
    • Dai, X.1    Zhou, X.2    Jia, D.3    Xiao, L.4    Kong, H.5    He, M.6
  • 25
    • 84899857125 scopus 로고    scopus 로고
    • Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau
    • Dai, F., Zhou, Q., Lv, Z., Wang, X., Liu, G., Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indicat. 45 (2014), 184–194.
    • (2014) Ecol. Indicat. , vol.45 , pp. 184-194
    • Dai, F.1    Zhou, Q.2    Lv, Z.3    Wang, X.4    Liu, G.5
  • 26
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M., Bruzzone, L., Gianelle, D., Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 123 (2012), 258–270.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 27
    • 84871991252 scopus 로고    scopus 로고
    • Precision nitrogen management of wheat A review
    • Diacono, M., Rubino, P., Montemurro, F., Precision nitrogen management of wheat A review. Agron. Sustain. Dev. 33 (2013), 219–241.
    • (2013) Agron. Sustain. Dev. , vol.33 , pp. 219-241
    • Diacono, M.1    Rubino, P.2    Montemurro, F.3
  • 29
    • 85048484309 scopus 로고    scopus 로고
    • Advances in Machine Learning Applications in Software Engineering
    • IGI Global Hershey, PA, USA
    • Du, Z., Jeffrey, J.P.T., Advances in Machine Learning Applications in Software Engineering. 2007, IGI Global, Hershey, PA, USA.
    • (2007)
    • Du, Z.1    Jeffrey, J.P.T.2
  • 30
    • 85010540243 scopus 로고    scopus 로고
    • Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data
    • Elfatih, M.A., Fethi, B.A., Riyad, I., Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 34 (2013), 712–728.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 712-728
    • Elfatih, M.A.1    Fethi, B.A.2    Riyad, I.3
  • 31
    • 34548026535 scopus 로고    scopus 로고
    • Ground-based remote sensing for assessing water and nitrogen status of broccoli
    • El-Shikha, D.M., Waller, P., Hunsaker, D., Clarke, T., Barnes, E., Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agric. Water Manage. 92 (2007), 183–193.
    • (2007) Agric. Water Manage. , vol.92 , pp. 183-193
    • El-Shikha, D.M.1    Waller, P.2    Hunsaker, D.3    Clarke, T.4    Barnes, E.5
  • 32
    • 0004137119 scopus 로고
    • Remote sensing in hydrology
    • Chapman and Hall London
    • Engman, E.T., Gurney, R.J., Remote sensing in hydrology. 1991, Chapman and Hall, London.
    • (1991)
    • Engman, E.T.1    Gurney, R.J.2
  • 33
    • 34447526307 scopus 로고    scopus 로고
    • Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN)
    • Farifteh, J., Van der Meer, F., Atzberger, C., Carranza, E.J.M., Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 110 (2007), 59–78.
    • (2007) Remote Sens. Environ. , vol.110 , pp. 59-78
    • Farifteh, J.1    Van der Meer, F.2    Atzberger, C.3    Carranza, E.J.M.4
  • 34
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T.S., A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 (1973), 209–230.
    • (1973) Ann. Statist. , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 35
    • 80255131393 scopus 로고    scopus 로고
    • Site-specific early season potato yield forecast by neural network in Eastern Canada
    • Fortin, J.G., Anctil, F., Parent, L., Bolinder, M.A., Site-specific early season potato yield forecast by neural network in Eastern Canada. Prec. Agric. 12 (2011), 905–923.
    • (2011) Prec. Agric. , vol.12 , pp. 905-923
    • Fortin, J.G.1    Anctil, F.2    Parent, L.3    Bolinder, M.A.4
  • 36
    • 70549100100 scopus 로고    scopus 로고
    • A New Method for Optimal Cropping Pattern, In: Aguirre, A.H., Borja, R.M., Garciá C.A.R. (Eds.), MICAI 2009: Advances in Artificial Intelligence: 8th Mexican International Conference on Artificial Intelligence, Guanajuato, México, November 9-13. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg
    • Frausto-Solis, J., Gonzalez-Sanchez, A., Larre, M., 2009. A New Method for Optimal Cropping Pattern, In: Aguirre, A.H., Borja, R.M., Garciá C.A.R. (Eds.), MICAI 2009: Advances in Artificial Intelligence: 8th Mexican International Conference on Artificial Intelligence, Guanajuato, México, November 9-13, 2009. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 566–577.
    • (2009) , pp. 566-577
    • Frausto-Solis, J.1    Gonzalez-Sanchez, A.2    Larre, M.3
  • 37
    • 0030429663 scopus 로고    scopus 로고
    • NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B., NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58 (1996), 257–266.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 257-266
    • Gao, B.1
  • 38
    • 85055878107 scopus 로고    scopus 로고
    • Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist's tacit knowledge
    • Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., Ravid, G., Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist's tacit knowledge. Prec. Agric., 2017.
    • (2017) Prec. Agric.
    • Goldstein, A.1    Fink, L.2    Meitin, A.3    Bohadana, S.4    Lutenberg, O.5    Ravid, G.6
  • 39
    • 51549091171 scopus 로고    scopus 로고
    • Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry
    • Gontia, N.K., Tiwari, K.N., Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agric. Water Manage. 95 (2008), 1144–1152.
    • (2008) Agric. Water Manage. , vol.95 , pp. 1144-1152
    • Gontia, N.K.1    Tiwari, K.N.2
  • 41
    • 85026418263 scopus 로고    scopus 로고
    • Mid-season leaf glutamine predicts end-season maize grain yield and nitrogen content in response to nitrogen fertilization under field conditions
    • Goron, T., Nederend, J., Stewart, G., Deen, B., Raizada, M., Mid-season leaf glutamine predicts end-season maize grain yield and nitrogen content in response to nitrogen fertilization under field conditions. Agronomy, 7, 2017, 41.
    • (2017) Agronomy , vol.7 , pp. 41
    • Goron, T.1    Nederend, J.2    Stewart, G.3    Deen, B.4    Raizada, M.5
  • 42
    • 77954223904 scopus 로고    scopus 로고
    • Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 35.
    • Govender, M., Dye, P.J., Weiersbye, I.M., Witkowski, E.T.F., Ahmed, F., 2009. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 35.
    • (2009)
    • Govender, M.1    Dye, P.J.2    Weiersbye, I.M.3    Witkowski, E.T.F.4    Ahmed, F.5
  • 43
    • 79955846155 scopus 로고    scopus 로고
    • The Indian buffet process: an introduction and review
    • Griffiths, T.L., Ghahramani, Z., The Indian buffet process: an introduction and review. J. Mach. Learn. Res. 12 (2011), 1185–1224.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1185-1224
    • Griffiths, T.L.1    Ghahramani, Z.2
  • 44
    • 0030304952 scopus 로고    scopus 로고
    • Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data
    • Grossman, Y.L., Ustin, S.L., Jacquemoud, S., Sanderson, E.W., Schmuck, G., Verdebout, J., Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ. 56 (1996), 182–193.
    • (1996) Remote Sens. Environ. , vol.56 , pp. 182-193
    • Grossman, Y.L.1    Ustin, S.L.2    Jacquemoud, S.3    Sanderson, E.W.4    Schmuck, G.5    Verdebout, J.6
  • 45
    • 84906728259 scopus 로고    scopus 로고
    • Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach
    • Guo, P., Li, M., Luo, W., Tang, Q., Liu, Z., Lin, Z., Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 237 (2015), 49–59.
    • (2015) Geoderma , vol.237 , pp. 49-59
    • Guo, P.1    Li, M.2    Luo, W.3    Tang, Q.4    Liu, Z.5    Lin, Z.6
  • 46
    • 0004259970 scopus 로고    scopus 로고
    • Remote Sensing Geology
    • Springer-Verlag Berlin Heidelberg, Germany
    • Gupta, R.P., Remote Sensing Geology. 2003, Springer-Verlag, Berlin Heidelberg, Germany.
    • (2003)
    • Gupta, R.P.1
  • 47
    • 85041320702 scopus 로고    scopus 로고
    • Vineyard water status assessment using on-the-go thermal imaging and machine learning
    • Gutiérrez, S., Diago, M.P., Fernández-Novales, J., Tardaguila, J., Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLOS One, 13, 2018, e0192037.
    • (2018) PLOS One , vol.13 , pp. e0192037
    • Gutiérrez, S.1    Diago, M.P.2    Fernández-Novales, J.3    Tardaguila, J.4
  • 48
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90 (2004), 337–352.
    • (2004) Remote Sens. Environ. , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 49
    • 38349169572 scopus 로고    scopus 로고
    • Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data
    • Haboudane, D., Tremblay, N., Miller, J.R., Vigneault, P., Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 46 (2008), 423–437.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 423-437
    • Haboudane, D.1    Tremblay, N.2    Miller, J.R.3    Vigneault, P.4
  • 50
    • 0141792270 scopus 로고    scopus 로고
    • Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
    • Hansen, P.M., Schjoerring, J.K., Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86 (2003), 542–553.
    • (2003) Remote Sens. Environ. , vol.86 , pp. 542-553
    • Hansen, P.M.1    Schjoerring, J.K.2
  • 51
    • 84925068245 scopus 로고    scopus 로고
    • Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data
    • Heremans, S., Dong, Q., Zhang, B., Bydekerke, L., Van Orshoven, J., Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data. APPRES, 9, 2015, 097095.
    • (2015) APPRES , vol.9 , pp. 097095
    • Heremans, S.1    Dong, Q.2    Zhang, B.3    Bydekerke, L.4    Van Orshoven, J.5
  • 52
    • 0031883060 scopus 로고    scopus 로고
    • Satellite remote sensing for forestry planning—A review
    • Holmgren, P., Thuresson, T., Satellite remote sensing for forestry planning—A review. Scandinavian J. For. Res. 13 (1998), 90–110.
    • (1998) Scandinavian J. For. Res. , vol.13 , pp. 90-110
    • Holmgren, P.1    Thuresson, T.2
  • 53
    • 4544314243 scopus 로고    scopus 로고
    • Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis
    • Huang, Z., Turner, B.J., Dury, S.J., Wallis, I.R., Foley, W.J., Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93 (2004), 18–29.
    • (2004) Remote Sens. Environ. , vol.93 , pp. 18-29
    • Huang, Z.1    Turner, B.J.2    Dury, S.J.3    Wallis, I.R.4    Foley, W.J.5
  • 54
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A.R., A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (1988), 295–309.
    • (1988) Remote Sens. Environ. , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 55
    • 84907876845 scopus 로고    scopus 로고
    • A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests
    • Hultquist, C., Chen, G., Zhao, K., A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens. Lett. 5 (2014), 723–732.
    • (2014) Remote Sens. Lett. , vol.5 , pp. 723-732
    • Hultquist, C.1    Chen, G.2    Zhao, K.3
  • 56
    • 84943403082 scopus 로고    scopus 로고
    • Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands
    • Jaafar, H.H., Ahmad, F.A., Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens. 36 (2015), 4570–4589.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 4570-4589
    • Jaafar, H.H.1    Ahmad, F.A.2
  • 57
    • 85002644909 scopus 로고    scopus 로고
    • Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data
    • Jin, X., Kumar, L., Li, Z., Xu, X., Yang, G., Wang, J., Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data. Remote Sens., 8, 2016, 972.
    • (2016) Remote Sens. , vol.8 , pp. 972
    • Jin, X.1    Kumar, L.2    Li, Z.3    Xu, X.4    Yang, G.5    Wang, J.6
  • 58
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M., An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141 (2014), 116–128.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 59
    • 0000052456 scopus 로고
    • Laboratory methods for estimating nutritive quality. In: Davies, A., Baker, R.D., Grant, S.A., Laidlaw, A.S. (Eds.), Sward Measurement Handbook, second ed.
    • Jones, D.I.H., Moseley, G., 1993. Laboratory methods for estimating nutritive quality. In: Davies, A., Baker, R.D., Grant, S.A., Laidlaw, A.S. (Eds.), Sward Measurement Handbook, second ed., pp. 265–283.
    • (1993) , pp. 265-283
    • Jones, D.I.H.1    Moseley, G.2
  • 60
    • 0000043946 scopus 로고
    • Derivation of leaf-area index from quality of light on the forest floor
    • Jordan, C.F., Derivation of leaf-area index from quality of light on the forest floor. Ecology 50 (1969), 663–666.
    • (1969) Ecology , vol.50 , pp. 663-666
    • Jordan, C.F.1
  • 61
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul, M., Hill, R.L., Walthall, C., Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85 (2005), 1–18.
    • (2005) Agric. Syst. , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 62
    • 48249097297 scopus 로고
    • Physical and physiological bases for the reference of visible and near infrared radiation from vegetation
    • Knipling, E.B., Physical and physiological bases for the reference of visible and near infrared radiation from vegetation. Remote Sens. Environ. 1 (1970), 155–159.
    • (1970) Remote Sens. Environ. , vol.1 , pp. 155-159
    • Knipling, E.B.1
  • 63
    • 0035144811 scopus 로고    scopus 로고
    • Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration
    • Kokaly, R.F., Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ. 75 (2001), 153–161.
    • (2001) Remote Sens. Environ. , vol.75 , pp. 153-161
    • Kokaly, R.F.1
  • 64
    • 84962520548 scopus 로고    scopus 로고
    • Estimating crop yields with deep learning and remotely sensed data IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
    • Kuwata, K., Shibasaki, R., 2015. Estimating crop yields with deep learning and remotely sensed data, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 858–861.
    • (2015) , pp. 858-861
    • Kuwata, K.1    Shibasaki, R.2
  • 65
    • 0013340647 scopus 로고    scopus 로고
    • PA—Precision agriculture
    • Lamb, D.W., Brown, R.B., PA—Precision agriculture. J. Agric. Eng. Res. 78 (2001), 117–125.
    • (2001) J. Agric. Eng. Res. , vol.78 , pp. 117-125
    • Lamb, D.W.1    Brown, R.B.2
  • 66
    • 0037144451 scopus 로고    scopus 로고
    • Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations
    • Lamb, D.W., Steyn-Ross, M., Schaare, P., Hanna, M.M., Silvester, W., Steyn-Ross, A., Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. Int. J. Remote Sens. 23 (2002), 3619–3648.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 3619-3648
    • Lamb, D.W.1    Steyn-Ross, M.2    Schaare, P.3    Hanna, M.M.4    Silvester, W.5    Steyn-Ross, A.6
  • 67
    • 77954145922 scopus 로고    scopus 로고
    • Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages
    • Li, F., Miao, Y., Hennig, S.D., Gnyp, M.L., Chen, X., Jia, L., Bareth, G., Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Prec. Agric. 11 (2010), 335–357.
    • (2010) Prec. Agric. , vol.11 , pp. 335-357
    • Li, F.1    Miao, Y.2    Hennig, S.D.3    Gnyp, M.L.4    Chen, X.5    Jia, L.6    Bareth, G.7
  • 68
    • 84983738622 scopus 로고    scopus 로고
    • Predicting grassland leaf area index in the meadow steppes of northern china: a comparative study of regression approaches and hybrid geostatistical methods
    • Li, Z., Wang, J., Tang, H., Huang, C., Yang, F., Chen, B., Wang, X., Xin, X., Ge, Y., Predicting grassland leaf area index in the meadow steppes of northern china: a comparative study of regression approaches and hybrid geostatistical methods. Remote Sens., 8, 2016, 632.
    • (2016) Remote Sens. , vol.8 , pp. 632
    • Li, Z.1    Wang, J.2    Tang, H.3    Huang, C.4    Yang, F.5    Chen, B.6    Wang, X.7    Xin, X.8    Ge, Y.9
  • 69
    • 84929581266 scopus 로고    scopus 로고
    • Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method
    • Liang, L., Di, L., Zhang, L., Deng, M., Qin, Z., Zhao, S., Lin, H., Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165 (2015), 123–134.
    • (2015) Remote Sens. Environ. , vol.165 , pp. 123-134
    • Liang, L.1    Di, L.2    Zhang, L.3    Deng, M.4    Qin, Z.5    Zhao, S.6    Lin, H.7
  • 70
    • 0035187124 scopus 로고    scopus 로고
    • A neural network for setting target corn yields. 44
    • Liu, J., Goering, C.E., Tian, L., 2001. A neural network for setting target corn yields. 44, pp. 705–713.
    • (2001) , pp. 705-713
    • Liu, J.1    Goering, C.E.2    Tian, L.3
  • 73
    • 84865512268 scopus 로고    scopus 로고
    • Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review
    • Maes, W.H., Steppe, K., Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J. Exp. Bot. 63 (2012), 4671–4712.
    • (2012) J. Exp. Bot. , vol.63 , pp. 4671-4712
    • Maes, W.H.1    Steppe, K.2
  • 74
    • 84981165049 scopus 로고    scopus 로고
    • Mapping wheat nitrogen uptake from RapidEye vegetation indices
    • Magney, T.S., Eitel, J.U.H., Vierling, L.A., Mapping wheat nitrogen uptake from RapidEye vegetation indices. Prec. Agric. 18 (2017), 429–451.
    • (2017) Prec. Agric. , vol.18 , pp. 429-451
    • Magney, T.S.1    Eitel, J.U.H.2    Vierling, L.A.3
  • 75
    • 85002557571 scopus 로고    scopus 로고
    • Maresma, Á., Ariza, M., Martínez, E., Lloveras, J., Martínez-Casasnovas, J. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing 8, 973.
    • Maresma, Á., Ariza, M., Martínez, E., Lloveras, J., Martínez-Casasnovas, J., 2016. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing 8, 973.
    • (2016)
  • 76
    • 84978186424 scopus 로고    scopus 로고
    • Data mining approach for predictive modeling of agricultural yield data
    • Proc. First International Workshop on Sensing Technologies in Agriculture Novi Sad, Serbia
    • Marinković B., Crnobarac, J., Brdar, S., Antić B., Jaćimović G., Crnojević V., Data mining approach for predictive modeling of agricultural yield data. 2009, Proc. First International Workshop on Sensing Technologies in Agriculture, Novi Sad, Serbia, 1–5.
    • (2009) , pp. 1-5
    • Marinković, B.1    Crnobarac, J.2    Brdar, S.3    Antić, B.4    Jaćimović, G.5    Crnojević, V.6
  • 77
    • 84964233163 scopus 로고    scopus 로고
    • Predicting pre-planting risk of stagonospora nodorum blotch in winter wheat using machine learning models
    • Mehra, L.K., Cowger, C., Gross, K., Ojiambo, P.S., Predicting pre-planting risk of stagonospora nodorum blotch in winter wheat using machine learning models. Front. Plant Sci., 7, 2016, 390.
    • (2016) Front. Plant Sci. , vol.7 , pp. 390
    • Mehra, L.K.1    Cowger, C.2    Gross, K.3    Ojiambo, P.S.4
  • 80
    • 84988958512 scopus 로고    scopus 로고
    • Machine learning approaches to corn yield estimation using satellite images and climate data: a case of iowa state
    • Nari, K., Yang-Won, L., Machine learning approaches to corn yield estimation using satellite images and climate data: a case of iowa state. J. Korean Soc. Surv., Geodesy, Photogramm. Cartogr. 34 (2016), 383–390.
    • (2016) J. Korean Soc. Surv., Geodesy, Photogramm. Cartogr. , vol.34 , pp. 383-390
    • Nari, K.1    Yang-Won, L.2
  • 81
    • 85013861456 scopus 로고    scopus 로고
    • Chapter Four - Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review
    • D.L. Sparks Academic Press
    • Nawar, S., Corstanje, R., Halcro, G., Mulla, D., Mouazen, A.M., Chapter Four - Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Sparks, D.L., (eds.) Advances in Agronomy, 2017, Academic Press, 175–245.
    • (2017) Advances in Agronomy , pp. 175-245
    • Nawar, S.1    Corstanje, R.2    Halcro, G.3    Mulla, D.4    Mouazen, A.M.5
  • 82
    • 80051774000 scopus 로고    scopus 로고
    • Application of vegetation indices for agricultural crop yield prediction using neural network techniques
    • Panda, S.S., Ames, D.P., Panigrahi, S., Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2 (2010), 673–696.
    • (2010) Remote Sens. , vol.2 , pp. 673-696
    • Panda, S.S.1    Ames, D.P.2    Panigrahi, S.3
  • 83
    • 85048503335 scopus 로고    scopus 로고
    • Data Fusion of Proximal Soil Sensing and Remote Crop Sensing for the Delineation of Management Zones in Arable Crop Precision Farming. In: 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015), Kavala - Greece.
    • Pantazi, X.E., Moshou, D., Mouazen, A., Alexandridis, T., Kuang, B., 2015. Data Fusion of Proximal Soil Sensing and Remote Crop Sensing for the Delineation of Management Zones in Arable Crop Precision Farming. In: 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015), Kavala - Greece.
    • (2015)
    • Pantazi, X.E.1    Moshou, D.2    Mouazen, A.3    Alexandridis, T.4    Kuang, B.5
  • 85
    • 79954611831 scopus 로고    scopus 로고
    • Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application
    • Papageorgiou, E.I., Markinos, A.T., Gemtos, T.A., Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl. Soft Comput. 11 (2011), 3643–3657.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3643-3657
    • Papageorgiou, E.I.1    Markinos, A.T.2    Gemtos, T.A.3
  • 88
    • 0032030026 scopus 로고    scopus 로고
    • Review article Multisensor image fusion in remote sensing: Concepts, methods and applications
    • Pohl, C., Van Genderen, J.L., Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 19 (1998), 823–854.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.L.2
  • 90
    • 84898065914 scopus 로고    scopus 로고
    • Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization
    • Quemada, M., Gabriel, J., Zarco-Tejada, P., Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens., 6, 2014, 2940.
    • (2014) Remote Sens. , vol.6 , pp. 2940
    • Quemada, M.1    Gabriel, J.2    Zarco-Tejada, P.3
  • 91
    • 85048513952 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.
    • Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.
    • (2005)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 93
    • 33645723353 scopus 로고    scopus 로고
    • Measuring wheat nitrogen status from space and ground-based platform
    • Reyniers, M., Vrindts, E., Measuring wheat nitrogen status from space and ground-based platform. Int. J. Remote Sens. 27 (2006), 549–567.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 549-567
    • Reyniers, M.1    Vrindts, E.2
  • 94
    • 0002872223 scopus 로고
    • Monitoring Vegetation Systems in the Great plains with ERTS, NASA. Goddard Space Flight Center 3d ERTS-1 Symposium. United States, Washington, DC
    • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring Vegetation Systems in the Great plains with ERTS, NASA. Goddard Space Flight Center 3d ERTS-1 Symposium. United States, Washington, DC, pp. 309–317.
    • (1973) , pp. 309-317
    • Rouse, J.W.1    Haas, R.H.2    Schell, J.A.3    Deering, D.W.4
  • 96
    • 79956069226 scopus 로고    scopus 로고
    • Machine learning methods for spatial clustering on precision agriculture data
    • A. Kofod-Petersen F. Heintz H. Langseth IOS Press
    • Ruß G., Kruse, R., Machine learning methods for spatial clustering on precision agriculture data. Kofod-Petersen, A., Heintz, F., Langseth, H., (eds.) Eleventh Scandinavian Conference on Artificial Intelligence, 2011, IOS Press, 40–49.
    • (2011) Eleventh Scandinavian Conference on Artificial Intelligence , pp. 40-49
    • Ruß, G.1    Kruse, R.2
  • 97
    • 76249125285 scopus 로고    scopus 로고
    • Data mining of agricultural yield data: a comparison of regression models. In: Perner, P. (Ed.), Advances in Data Mining. Applications and Theoretical Aspects: 9th Industrial Conference, ICDM 2009, Leipzig, Germany, July 20 - 22. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg
    • Ruß G., 2009. Data mining of agricultural yield data: a comparison of regression models. In: Perner, P. (Ed.), Advances in Data Mining. Applications and Theoretical Aspects: 9th Industrial Conference, ICDM 2009, Leipzig, Germany, July 20 - 22, 2009. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 24–37.
    • (2009) , pp. 24-37
    • Ruß, G.1
  • 98
    • 85048503174 scopus 로고    scopus 로고
    • Artificial neural networks application to predict wheat yield using climatic data. In: Proc. 20th Int. Conf. on IIPS
    • Safa, B., Khalili, A., Teshnehlab, M., Liaghat, A., 2004. Artificial neural networks application to predict wheat yield using climatic data. In: Proc. 20th Int. Conf. on IIPS, pp. 1–39.
    • (2004) , pp. 1-39
    • Safa, B.1    Khalili, A.2    Teshnehlab, M.3    Liaghat, A.4
  • 99
    • 84964614573 scopus 로고    scopus 로고
    • Crop yield prediction under soil salinity using satellite derived vegetation indices
    • Satir, O., Berberoglu, S., Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Res. 192 (2016), 134–143.
    • (2016) Field Crops Res. , vol.192 , pp. 134-143
    • Satir, O.1    Berberoglu, S.2
  • 101
    • 85048495228 scopus 로고    scopus 로고
    • Nitrogen in Agricultural Systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI.
    • Schepers, J.S., Raun, W.R., 2008. Nitrogen in Agricultural Systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI.
    • (2008)
    • Schepers, J.S.1    Raun, W.R.2
  • 102
    • 85048488021 scopus 로고    scopus 로고
    • Infrastructure for data-driven agriculture: identifying management zones for cotton using statistical modeling and machine learning techniques. In: 2011 8th International Conference & Expo on Emerging Technologies for a Smarter World
    • Schuster, E.W., Kumar, S., Sarma, S.E., Willers, J.L., Milliken, G.A., 2011. Infrastructure for data-driven agriculture: identifying management zones for cotton using statistical modeling and machine learning techniques. In: 2011 8th International Conference & Expo on Emerging Technologies for a Smarter World, p. 1.
    • (2011) , pp. 1
    • Schuster, E.W.1    Kumar, S.2    Sarma, S.E.3    Willers, J.L.4    Milliken, G.A.5
  • 103
    • 0442298832 scopus 로고    scopus 로고
    • Remote sensing applications for precision agriculture: A learning community approach
    • Seelan, S.K., Laguette, S., Casady, G.M., Seielstad, G.A., Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 88 (2003), 157–169.
    • (2003) Remote Sens. Environ. , vol.88 , pp. 157-169
    • Seelan, S.K.1    Laguette, S.2    Casady, G.M.3    Seielstad, G.A.4
  • 104
    • 84856224482 scopus 로고    scopus 로고
    • Quantification of nitrogen status in rice by least squares support vector machines and reflectance spectroscopy
    • Shao, Y., Zhao, C., Bao, Y., He, Y., Quantification of nitrogen status in rice by least squares support vector machines and reflectance spectroscopy. Food Bioprocess Technol. 5 (2012), 100–107.
    • (2012) Food Bioprocess Technol. , vol.5 , pp. 100-107
    • Shao, Y.1    Zhao, C.2    Bao, Y.3    He, Y.4
  • 105
    • 0036330345 scopus 로고    scopus 로고
    • Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
    • Sims, D.A., Gamon, J.A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81 (2002), 337–354.
    • (2002) Remote Sens. Environ. , vol.81 , pp. 337-354
    • Sims, D.A.1    Gamon, J.A.2
  • 106
    • 85019363229 scopus 로고    scopus 로고
    • Spatial variability analysis of within-field winter wheat nitrogen and grain quality using canopy fluorescence sensor measurements
    • Song, X., Yang, G., Yang, C., Wang, J., Cui, B., Spatial variability analysis of within-field winter wheat nitrogen and grain quality using canopy fluorescence sensor measurements. Remote Sens., 9, 2017, 237.
    • (2017) Remote Sens. , vol.9 , pp. 237
    • Song, X.1    Yang, G.2    Yang, C.3    Wang, J.4    Cui, B.5
  • 107
    • 84994108569 scopus 로고    scopus 로고
    • A comparison of machine learning algorithms for regional wheat yield prediction using NDVI time series of SPOT-VGT. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics)
    • Stas, M., Orshoven, J.V., Dong, Q., Heremans, S., Zhang, B., 2016. A comparison of machine learning algorithms for regional wheat yield prediction using NDVI time series of SPOT-VGT. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–5.
    • (2016) , pp. 1-5
    • Stas, M.1    Orshoven, J.V.2    Dong, Q.3    Heremans, S.4    Zhang, B.5
  • 108
    • 84994181509 scopus 로고    scopus 로고
    • Gour Hari, S. Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian J. Sci. Technol. 9.
    • Subhadra, M., Debahuti, M., Gour Hari, S., 2016. Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian J. Sci. Technol. 9.
    • (2016)
    • Subhadra, M.1    Debahuti, M.2
  • 110
    • 84870852251 scopus 로고    scopus 로고
    • Infrared thermometry to estimate crop water stress index and water use of irrigated maize in Northeastern Colorado
    • Taghvaeian, S., Chávez, J., Hansen, N., Infrared thermometry to estimate crop water stress index and water use of irrigated maize in Northeastern Colorado. Remote Sens., 4, 2012, 3619.
    • (2012) Remote Sens. , vol.4 , pp. 3619
    • Taghvaeian, S.1    Chávez, J.2    Hansen, N.3
  • 111
    • 34848827405 scopus 로고    scopus 로고
    • A vision-based method for weeds identification through the Bayesian decision theory
    • Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A., A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recogn. 41 (2008), 521–530.
    • (2008) Pattern Recogn. , vol.41 , pp. 521-530
    • Tellaeche, A.1    Burgos-Artizzu, X.P.2    Pajares, G.3    Ribeiro, A.4
  • 112
    • 51149086031 scopus 로고    scopus 로고
    • A vision-based classifier in precision agriculture combining bayes and support vector machines. In: IEEE International Symposium on Intelligent Signal Processing
    • Tellaeche, A., BurgosArtizzu, X.P., Pajares, G., Ribeiro, A., 2007. A vision-based classifier in precision agriculture combining bayes and support vector machines. In: IEEE International Symposium on Intelligent Signal Processing, pp. 1–6.
    • (2007) , pp. 1-6
    • Tellaeche, A.1    BurgosArtizzu, X.P.2    Pajares, G.3    Ribeiro, A.4
  • 113
    • 78650175444 scopus 로고    scopus 로고
    • Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance
    • Tian, Y.C., Yao, X., Yang, J., Cao, W.X., Hannaway, D.B., Zhu, Y., Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res. 120 (2011), 299–310.
    • (2011) Field Crops Res. , vol.120 , pp. 299-310
    • Tian, Y.C.1    Yao, X.2    Yang, J.3    Cao, W.X.4    Hannaway, D.B.5    Zhu, Y.6
  • 114
    • 85027931921 scopus 로고    scopus 로고
    • Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    • Tian, Y.C., Gu, K., Chu, X., Yao, X., Cao, W.X., Zhu, Y., Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 376 (2014), 193–209.
    • (2014) Plant Soil , vol.376 , pp. 193-209
    • Tian, Y.C.1    Gu, K.2    Chu, X.3    Yao, X.4    Cao, W.X.5    Zhu, Y.6
  • 116
    • 79959855336 scopus 로고    scopus 로고
    • Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements
    • Tremblay, N., Fallon, E., Ziadi, N., Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements. HortTechnology 21 (2011), 274–281.
    • (2011) HortTechnology , vol.21 , pp. 274-281
    • Tremblay, N.1    Fallon, E.2    Ziadi, N.3
  • 117
    • 84863692506 scopus 로고    scopus 로고
    • Sensing crop nitrogen status with fluorescence indicators. A review
    • Tremblay, N., Wang, Z., Cerovic, Z.G., Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32 (2012), 451–464.
    • (2012) Agron. Sustain. Dev. , vol.32 , pp. 451-464
    • Tremblay, N.1    Wang, Z.2    Cerovic, Z.G.3
  • 118
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J., Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 (1979), 127–150.
    • (1979) Remote Sens. Environ. , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 119
    • 85177402909 scopus 로고    scopus 로고
    • Crop Type Classification Using Vegetation Indices of RapidEye Imagery
    • ISPRS Technical Commission VII Symposium Istanbul, Turkey
    • Ustuner, M., Sanli, F.B., Abdikan, S., Esetlili, M.T., Kurucu, Y., Crop Type Classification Using Vegetation Indices of RapidEye Imagery. 2014, ISPRS Technical Commission VII Symposium, Istanbul, Turkey.
    • (2014)
    • Ustuner, M.1    Sanli, F.B.2    Abdikan, S.3    Esetlili, M.T.4    Kurucu, Y.5
  • 120
    • 79954419387 scopus 로고    scopus 로고
    • Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat
    • Vigneau, N., Ecarnot, M., Rabatel, G., Roumet, P., Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 122 (2011), 25–31.
    • (2011) Field Crops Res. , vol.122 , pp. 25-31
    • Vigneau, N.1    Ecarnot, M.2    Rabatel, G.3    Roumet, P.4
  • 121
    • 81355146796 scopus 로고    scopus 로고
    • Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
    • Viña, A., Gitelson, A.A., Nguy-Robertson, A.L., Peng, Y., Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 115 (2011), 3468–3478.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 3468-3478
    • Viña, A.1    Gitelson, A.A.2    Nguy-Robertson, A.L.3    Peng, Y.4
  • 123
    • 84960423826 scopus 로고    scopus 로고
    • Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants. 6, 22482.
    • Wahabzada, M., Mahlein, A., Bauckhage, C., Steiner, U., Oerke, E., Kersting, K., 2016. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants. 6, 22482.
    • (2016)
    • Wahabzada, M.1    Mahlein, A.2    Bauckhage, C.3    Steiner, U.4    Oerke, E.5    Kersting, K.6
  • 124
    • 85014794385 scopus 로고    scopus 로고
    • Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards
    • Wang, J., Shen, C., Liu, N., Jin, X., Fan, X., Dong, C., Xu, Y., Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors, 17, 2017, 538.
    • (2017) Sensors , vol.17 , pp. 538
    • Wang, J.1    Shen, C.2    Liu, N.3    Jin, X.4    Fan, X.5    Dong, C.6    Xu, Y.7
  • 125
    • 0001717058 scopus 로고    scopus 로고
    • Inducing model trees for continuous classes, Proc. 9th Eur. Conf
    • Wang, Y., Witten, I., Inducing model trees for continuous classes, Proc. 9th Eur. Conf. Mach. Learn., 1997, 128–137.
    • (1997) Mach. Learn. , pp. 128-137
    • Wang, Y.1    Witten, I.2
  • 126
    • 85048513521 scopus 로고    scopus 로고
    • Precision agriculture for grain production systems. CSIRO Publishing.
    • Whelan, B.M., Taylor, J.A., 2013. Precision agriculture for grain production systems. CSIRO Publishing.
    • (2013)
    • Whelan, B.M.1    Taylor, J.A.2
  • 127
    • 0000960084 scopus 로고
    • Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling
    • Wiegand, C.L., Richardson, A.J., Kanemasu, E.T., Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling. Agron. J. 71 (1979), 336–342.
    • (1979) Agron. J. , vol.71 , pp. 336-342
    • Wiegand, C.L.1    Richardson, A.J.2    Kanemasu, E.T.3
  • 128
    • 84899551777 scopus 로고    scopus 로고
    • Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset
    • Wittenberghe, V.S., Verrelst, J., Rivera, J.P., Alonso, L., Moreno, J., Samson, R., Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol. B: Biol. 134 (2014), 37–48.
    • (2014) J. Photochem. Photobiol. B: Biol. , vol.134 , pp. 37-48
    • Wittenberghe, V.S.1    Verrelst, J.2    Rivera, J.P.3    Alonso, L.4    Moreno, J.5    Samson, R.6
  • 129
    • 84946494496 scopus 로고    scopus 로고
    • Comparison of two inversion methods for leaf area index using HJ-1 satellite data in a temperate meadow steppe
    • Wu, Q., Jin, Y., Bao, Y., Hai, Q., Yan, R., Chen, B., Zhang, H., Zhang, B., Li, Z., Li, X., Xin, X., Comparison of two inversion methods for leaf area index using HJ-1 satellite data in a temperate meadow steppe. Int. J. Remote Sens. 36 (2015), 5192–5207.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 5192-5207
    • Wu, Q.1    Jin, Y.2    Bao, Y.3    Hai, Q.4    Yan, R.5    Chen, B.6    Zhang, H.7    Zhang, B.8    Li, Z.9    Li, X.10    Xin, X.11
  • 130
    • 85021707297 scopus 로고    scopus 로고
    • Significant remote sensing vegetation indices: a review of developments and applications
    • Xue, J., Su, B., Significant remote sensing vegetation indices: a review of developments and applications. J. Sens., 2017, 2017, 17.
    • (2017) J. Sens. , vol.2017 , pp. 17
    • Xue, J.1    Su, B.2
  • 131
    • 84962319206 scopus 로고    scopus 로고
    • Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength
    • Yang, J., Gong, W., Shi, S., Du, L., Sun, J., Song, S., Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength. Spectrosc. Lett. 49 (2016), 263–267.
    • (2016) Spectrosc. Lett. , vol.49 , pp. 263-267
    • Yang, J.1    Gong, W.2    Shi, S.3    Du, L.4    Sun, J.5    Song, S.6
  • 132
    • 77958482900 scopus 로고    scopus 로고
    • Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat
    • Yao, X., Zhu, Y., Tian, Y.C., Feng, W., Cao, W., Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Observ. Geoinform. 12 (2010), 89–100.
    • (2010) Int. J. Appl. Earth Observ. Geoinform. , vol.12 , pp. 89-100
    • Yao, X.1    Zhu, Y.2    Tian, Y.C.3    Feng, W.4    Cao, W.5
  • 133
  • 134
    • 85026552366 scopus 로고    scopus 로고
    • Deep gaussian process for crop yield prediction based on remote sensing data. Association for the Advancement of Artificial Intelligence.
    • You, J., Li, X., Low, M., Lobell, D., Ermon, S., 2017. Deep gaussian process for crop yield prediction based on remote sensing data. Association for the Advancement of Artificial Intelligence.
    • (2017)
    • You, J.1    Li, X.2    Low, M.3    Lobell, D.4    Ermon, S.5
  • 135
    • 84874562558 scopus 로고    scopus 로고
    • Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain
    • Yu, K., Li, F., Gnyp, M.L., Miao, Y., Bareth, G., Chen, X., Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 78 (2013), 102–115.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.78 , pp. 102-115
    • Yu, K.1    Li, F.2    Gnyp, M.L.3    Miao, Y.4    Bareth, G.5    Chen, X.6
  • 136
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Yuan, Y., Zhu, G., Wang, Q., Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 53 (2015), 631–644.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 137
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
    • Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117 (2012), 322–337.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.J.3
  • 138
    • 84901828473 scopus 로고    scopus 로고
    • Simulation and prediction of soybean growth and development under field conditions
    • Zhang, L., Zhang, J., Kyei-Boahen, S., Zhang, M., Simulation and prediction of soybean growth and development under field conditions. Am.-Eurasian J. Agric. Environ. Sci. 7 (2010), 374–385.
    • (2010) Am.-Eurasian J. Agric. Environ. Sci. , vol.7 , pp. 374-385
    • Zhang, L.1    Zhang, J.2    Kyei-Boahen, S.3    Zhang, M.4
  • 139
    • 84887827201 scopus 로고    scopus 로고
    • A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency
    • Zhao, G., Miao, Y., Wang, H., Su, M., Fan, M., Zhang, F., Jiang, R., Zhang, Z., Liu, C., Liu, P., Ma, D., A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Res. 154 (2013), 23–30.
    • (2013) Field Crops Res. , vol.154 , pp. 23-30
    • Zhao, G.1    Miao, Y.2    Wang, H.3    Su, M.4    Fan, M.5    Zhang, F.6    Jiang, R.7    Zhang, Z.8    Liu, C.9    Liu, P.10    Ma, D.11
  • 140
    • 84874078755 scopus 로고    scopus 로고
    • Wireless sensor network data fusion algorithm based on neural network in the area of agriculture
    • Zhou, Y., Song, G., Wang, M., Wireless sensor network data fusion algorithm based on neural network in the area of agriculture. Sens. Transducers J. 16 (2012), 128–136.
    • (2012) Sens. Transducers J. , vol.16 , pp. 128-136
    • Zhou, Y.1    Song, G.2    Wang, M.3
  • 141
    • 42449114280 scopus 로고    scopus 로고
    • Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in rice and wheat
    • Zhu, Y., Li, Y., Zhou, D., Tian, Y.C., Yao, X., Cao, W., Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in rice and wheat. Acta Ecol. Sin. 26 (2006), 3463–3469.
    • (2006) Acta Ecol. Sin. , vol.26 , pp. 3463-3469
    • Zhu, Y.1    Li, Y.2    Zhou, D.3    Tian, Y.C.4    Yao, X.5    Cao, W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.