-
3
-
-
34249753618
-
Support-vector networks
-
Cortes, Corinna and Vapnik, Vladimir. Support-vector networks. Machine learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248-255. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
85048456154
-
-
fchollet. Kcras. Https://github.com/fchollet/keras,2015.
-
(2015)
Fchollet Kcras
-
-
-
8
-
-
85028732538
-
Bayesian convolutional neural networks with bernoulli approximate variational inference
-
Gal, Yarin and Ghahramani, Zoubin. Bayesian convolutional neural networks with Bernoulli approximate variational inference. ICLR workshop track, 2016a.
-
(2016)
ICLR Workshop Track
-
-
Gal, Y.1
Ghahramani, Z.2
-
9
-
-
84998879817
-
Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
-
Gal, Yarin and Ghahramani, Zoubin. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. ICML, 2016b.
-
(2016)
ICML
-
-
Gal, Y.1
Ghahramani, Z.2
-
10
-
-
85048402138
-
-
arXiv preprint arXiv: 1605.01397
-
Gutman, David, Codella, Noel CF, Celebi, Emre, Helba, Brian, Marchetti, Michael, Mishra, Nabin, and Halpern, Allan. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). ArXiv preprint arXiv:1605.01397,20\6.
-
(2016)
Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, Hosted by the International Skin Imaging Collaboration (ISIC)
-
-
Gutman, D.1
Codella, N.C.F.2
Celebi, E.3
Helba, B.4
Marchetti, M.5
Mishra, N.6
Halpern, A.7
-
11
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision,pp. 1026-1034,2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580
-
Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan R. Improving neural networks by preventing co-adaptation of feature detectors. ArXiv preprint arXiv: 1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
14
-
-
51849135396
-
Entropy-based active learning for object recognition
-
IEEE
-
Holub, Alex, Perona, Pietro, and Burl, Michael C. Entropy-based active learning for object recognition. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on, pp. 1-8. IEEE, 2008.
-
(2008)
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08 IEEE Computer Society Conference on
, pp. 1-8
-
-
Holub, A.1
Perona, P.2
Burl, M.C.3
-
15
-
-
84868279266
-
-
arXiv preprint arXiv:! 112.5745
-
Houlsby, Neil, Huszar, Ferenc, Ghahramani, Zoubin, and Lengyel, Mâté. Bayesian active learning for classification and preference learning. ArXiv preprint arXiv:! 112.5745, 2011.
-
(2011)
Bayesian Active Learning for Classification and Preference Learning
-
-
Houlsby, N.1
Huszar, F.2
Ghahramani, Z.3
Lengyel, M.4
-
16
-
-
70450181250
-
Multi-class active learning for image classification
-
IEEE
-
Joshi, Ajay J, Porikli, Fatih, and Papanikolopoulos, Niko-laos. Multi-class active learning for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 2372-2379. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE Conference on
, pp. 2372-2379
-
-
Joshi, A.J.1
Porikli, F.2
Papanikolopoulos, N.3
-
17
-
-
84978840213
-
-
arXiv preprint arXiv: 1602.02410
-
Jozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazccr, Noam, and Wu, Yonghui. Exploring the limits of language modeling. ArXiv preprint arXiv: 1602.02410, 2016.
-
(2016)
Exploring the Limits of Language Modeling
-
-
Jozefowicz, R.1
Vinyals, O.2
Schuster, M.3
Shazccr, N.4
Wu, Y.5
-
18
-
-
84926283798
-
Recurrent continuous translation models
-
Kalchbrenner, Nal and Blunsom, Phil. Recurrent continuous translation models. In EMNLP, 2013.
-
(2013)
EMNLP
-
-
Kalchbrenner, N.1
Blunsom, P.2
-
21
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, Diederik P, Mohamed, Shakir, Rezende, Danilo Jimenez, and Welling, Max. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pp. 3581-3589, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Yann, Böser, Bernhard, Denker, John S, Henderson, Donnie, Howard, Richard E, Hubbard, Wayne, and Jackel, Lawrence D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Böser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
25
-
-
84922375195
-
Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
-
Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, 2013.
-
(2013)
Workshop on Challenges in Representation Learning
-
-
Lee, D.-H.1
-
27
-
-
78649457203
-
Open access series of imaging studies: Longitudinal mri data in nonde-mented and demented older adults
-
Marcus, Daniel S, Fotenos, Anthony F, Csernansky, John G, Morris, John C, and Buckner, Randy L. Open access series of imaging studies: longitudinal mri data in nonde-mented and demented older adults. Journal of cognitive neuroscience, 22(12):2677-2684, 2010.
-
(2010)
Journal of Cognitive Neuroscience
, vol.22
, Issue.12
, pp. 2677-2684
-
-
Marcus, D.S.1
Fotenos, A.F.2
Csernansky, J.G.3
Morris, J.C.4
Buckner, R.L.5
-
28
-
-
84965162688
-
-
arXiv preprint arXiv: 1507.00677
-
Miyato, Takeru, Maeda, Shin-ichi, Koyama, Masanori, Nakae, Ken, and Ishii, Shin. Distributional smoothing by virtual adversarial examples. ArXiv preprint arXiv:1507.00677, 2015.
-
(2015)
Distributional Smoothing by Virtual Adversarial Examples
-
-
Miyato, T.1
Maeda, S.2
Koyama, M.3
Nakae, K.4
Ishii, S.5
-
29
-
-
84907062036
-
Semi-supervised learning using an unsupervised atlas
-
Springer
-
Pitelis, Nikolaos, Russell, Chris, and Agapito, Lourdes. Semi-supervised learning using an unsupervised atlas. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 565-580. Springer, 2014.
-
(2014)
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
, pp. 565-580
-
-
Pitelis, N.1
Russell, C.2
Agapito, L.3
-
30
-
-
84965136229
-
Scmi-supcrviscd learning with ladder networks
-
Rasmus, Antti, Berglund, Mathias, Honkala, Mikko, Valpola, Harri, and Raiko, Tapani. Scmi-supcrviscd learning with ladder networks. In Advances in Neural Information Processing Systems, pp. 3546-3554, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3546-3554
-
-
Rasmus, A.1
Berglund, M.2
Honkala, M.3
Valpola, H.4
Raiko, T.5
-
31
-
-
85162427692
-
The manifold tangent classifier
-
Rifai, Salah, Dauphin, Yann N, Vincent, Pascal, Bengio, Yoshua, and Muller, Xavier. The manifold tangent classifier. In Advances in Neural Information Processing Systems, pp. 2294-2302, 2011.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 2294-2302
-
-
Rifai, S.1
Dauphin, Y.N.2
Vincent, P.3
Bengio, Y.4
Muller, X.5
-
32
-
-
0003465475
-
-
Technical report DTIC Document
-
Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. Learning internal representations by error propagation. Technical report, DTIC Document, 1985.
-
(1985)
Learning Internal Representations by Error Propagation
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
33
-
-
84940644968
-
A mathematical theory of communication
-
Shannon, Claude Elwood. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948.
-
(1948)
Bell System Technical Journal
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.E.1
-
35
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.
-
(2014)
JMLR
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc VV. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.V.3
-
39
-
-
84872553130
-
Deep learning via semi-supervised embedding
-
Springer
-
Weston, Jason, Ratle, Frédéric, Mobahi, Hossein, and Col-lobert, Ronan. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pp. 639-655. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 639-655
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
Collobert, R.4
-
40
-
-
14344254639
-
Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
-
ICML
-
Zhu, X, Lafferty, J, and Ghahramani, Z. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In Proceedings of the ICML-2003 Workshop on The Continuum from Labeled to Unlabeled Data, pp. 58-65. ICML, 2003.
-
(2003)
Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data
, pp. 58-65
-
-
Zhu, X.1
Lafferty, J.2
Ghahramani, Z.3
|