메뉴 건너뛰기




Volumn 8, Issue 5, 2018, Pages

A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone

Author keywords

Biomass; Canopy height model; Digital surface model; Drone; Grass sward; Machine learning; Multiple linear regression; Photogrammetry; Random Forest; Unmanned aerial vehicle

Indexed keywords


EID: 85048261649     PISSN: None     EISSN: 20770472     Source Type: Journal    
DOI: 10.3390/agriculture8050070     Document Type: Article
Times cited : (149)

References (75)
  • 1
    • 0033298732 scopus 로고    scopus 로고
    • Comparison of Three Indirect Methods for Prediction of Herbage Mass on Timothy-Meadow Fescue Pastures
    • Virkajärvi, P. Comparison of Three Indirect Methods for Prediction of Herbage Mass on Timothy-Meadow Fescue Pastures. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999, 49, 75–81. [CrossRef]
    • (1999) Acta Agric. Scand. Sect. B Soil Plant Sci. , vol.49 , pp. 75-81
    • Virkajärvi, P.1
  • 2
    • 85048301383 scopus 로고    scopus 로고
    • Development and validation of practical methods for determination of dry matter yield in grass silage swards
    • Helsinki, Finland, 20–24 August
    • Pakarinen, K.; Hyrkäs, M.; Juutinen, E. Development and validation of practical methods for determination of dry matter yield in grass silage swards. In Proceedings of the 12th Congress of the European Society for Agronomy, Helsinki, Finland, 20–24 August 2012; Volume 14, pp. 542–543.
    • (2012) Proceedings of the 12Th Congress of the European Society for Agronomy , vol.14 , pp. 542-543
    • Pakarinen, K.1    Hyrkäs, M.2    Juutinen, E.3
  • 3
    • 84971645573 scopus 로고    scopus 로고
    • Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry
    • Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [CrossRef]
    • (2016) Remote Sens. Environ. , vol.183 , pp. 129-143
    • Cunliffe, A.M.1    Brazier, R.E.2    Anderson, K.3
  • 4
    • 0035159486 scopus 로고    scopus 로고
    • Leaf dynamics of timothy and meadow fescue under Nordic conditions
    • Virkajarvi, P.; Jarvenranta, K. Leaf dynamics of timothy and meadow fescue under Nordic conditions. Grass Forage Sci. 2001, 56, 294–304. [CrossRef]
    • (2001) Grass Forage Sci , vol.56 , pp. 294-304
    • Virkajarvi, P.1    Jarvenranta, K.2
  • 5
    • 84990803705 scopus 로고
    • A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass
    • Tucker, C.J. A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass. Grass Forage Sci. 1980, 35, 177–182. [CrossRef]
    • (1980) Grass Forage Sci , vol.35 , pp. 177-182
    • Tucker, C.J.1
  • 6
    • 0035659229 scopus 로고    scopus 로고
    • Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler
    • Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler. Agron. J. 2001, 93, 1281–1286. [CrossRef]
    • (2001) Agron. J. , vol.93 , pp. 1281-1286
    • Sanderson, M.A.1    Rotz, C.A.2    Fultz, S.W.3    Rayburn, E.B.4
  • 8
    • 84922032621 scopus 로고    scopus 로고
    • Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors
    • Pittman, J.; Arnall, D.; Interrante, S.; Moffet, C.; Butler, T. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors. Sensors 2015, 15, 2920–2943. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 2920-2943
    • Pittman, J.1    Arnall, D.2    Interrante, S.3    Moffet, C.4    Butler, T.5
  • 10
    • 84896285330 scopus 로고    scopus 로고
    • Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice
    • Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [CrossRef]
    • (2014) J. Appl. Remote Sens. , vol.8
    • Tilly, N.1    Hoffmeister, D.2    Cao, Q.3    Huang, S.4    Lenz-Wiedemann, V.5    Miao, Y.6    Bareth, G.7
  • 11
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: A review
    • Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [CrossRef]
    • (2012) Precis. Agric. , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 12
    • 84892621633 scopus 로고    scopus 로고
    • UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen
    • Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen. Photogramm. Fernerkund. Geoinf. 2013, 551–562. [CrossRef]
    • (2013) Photogramm. Fernerkund. Geoinf. , pp. 551-562
    • Bendig, J.1    Bolten, A.2    Bareth, G.3
  • 13
    • 84912124929 scopus 로고    scopus 로고
    • Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging
    • Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [CrossRef]
    • (2014) Remote Sens , vol.6 , pp. 10395-10412
    • Bendig, J.1    Bolten, A.2    Bennertz, S.3    Broscheit, J.4    Eichfuss, S.5    Bareth, G.6
  • 14
    • 84961989773 scopus 로고    scopus 로고
    • Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
    • Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [CrossRef]
    • (2016) Ecol. Indic. , vol.67 , pp. 637-648
    • Li, W.1    Niu, Z.2    Chen, H.3    Li, D.4    Wu, M.5    Zhao, W.6
  • 15
    • 84894272759 scopus 로고    scopus 로고
    • Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds
    • Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 53–62. [CrossRef]
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.27 , pp. 53-62
    • Lucieer, A.1    Turner, D.2    King, D.H.3    Robinson, S.A.4
  • 16
    • 85048278466 scopus 로고    scopus 로고
    • Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling
    • Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.; Robinson, S.A. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 168–179. [CrossRef]
    • (2018) Int. J. Appl. Earth Obs. Geoinf. , vol.68 , pp. 168-179
    • Turner, D.1    Lucieer, A.2    Malenovský, Z.3    King, D.4    Robinson, S.A.5
  • 17
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
    • Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 722-738
    • Berni, J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 18
    • 77956640482 scopus 로고    scopus 로고
    • Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring
    • Hunt, E.R.; Hively, W.D.; Fujikawa, S.; Linden, D.; Daughtry, C.S.; McCarty, G. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [CrossRef]
    • (2010) Remote Sens , vol.2 , pp. 290-305
    • Hunt, E.R.1    Hively, W.D.2    Fujikawa, S.3    Linden, D.4    Daughtry, C.S.5    McCarty, G.6
  • 19
    • 84937860942 scopus 로고    scopus 로고
    • Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images
    • Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 4026-4047
    • Candiago, S.1    Remondino, F.2    de Giglio, M.3    Dubbini, M.4    Gattelli, M.5
  • 20
    • 84990202914 scopus 로고    scopus 로고
    • A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation
    • Geipel, J.; Link, J.; Wirwahn, J.; Claupein, W. A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6, 4. [CrossRef]
    • (2016) Agriculture , vol.6 , pp. 4
    • Geipel, J.1    Link, J.2    Wirwahn, J.3    Claupein, W.4
  • 21
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
    • Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [CrossRef]
    • (2012) Remote Sens. Environ. , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.J.3
  • 22
    • 84887537551 scopus 로고    scopus 로고
    • Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
    • Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 5006-5039
    • Honkavaara, E.1    Saari, H.2    Kaivosoja, J.3    Pölönen, I.4    Hakala, T.5    Litkey, P.6    Mäkynen, J.7    Pesonen, L.8
  • 23
    • 84941263991 scopus 로고    scopus 로고
    • Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
    • Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [CrossRef]
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.108 , pp. 245-259
    • Aasen, H.1    Burkart, A.2    Bolten, A.3    Bareth, G.4
  • 24
    • 85022320211 scopus 로고    scopus 로고
    • Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
    • Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 708
    • Yue, J.1    Yang, G.2    Li, C.3    Li, Z.4    Wang, Y.5    Feng, H.6    Xu, B.7
  • 25
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [CrossRef]
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8
  • 26
    • 84930936368 scopus 로고    scopus 로고
    • A multi-sensor approach for predicting biomass of extensively managed grassland
    • Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [CrossRef]
    • (2014) Comput. Electron. Agric. , vol.109 , pp. 247-260
    • Reddersen, B.1    Fricke, T.2    Wachendorf, M.3
  • 27
    • 84886865428 scopus 로고    scopus 로고
    • Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards
    • Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards. Comput. Electron. Agric. 2013, 99, 236–247. [CrossRef]
    • (2013) Comput. Electron. Agric. , vol.99 , pp. 236-247
    • Fricke, T.1    Wachendorf, M.2
  • 28
    • 84942540720 scopus 로고    scopus 로고
    • Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass
    • Tilly, N.; Aasen, H.; Bareth, G. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass. Remote Sens. 2015, 7, 11449–11480. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 11449-11480
    • Tilly, N.1    Aasen, H.2    Bareth, G.3
  • 29
    • 84979504703 scopus 로고    scopus 로고
    • Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE)
    • Bareth, G.; Bolten, A.; Hollberg, J.; Aasen, H.; Burkart, A.; Schellberg, J. Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE), Germany. DGPF Tag. 2015, 24, 1–7.
    • (2015) Germany. DGPF Tag. , vol.24 , pp. 1-7
    • Bareth, G.1    Bolten, A.2    Hollberg, J.3    Aasen, H.4    Burkart, A.5    Schellberg, J.6
  • 31
    • 77954145922 scopus 로고    scopus 로고
    • Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages
    • Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010, 11, 335–357. [CrossRef]
    • (2010) Precis. Agric. , vol.11 , pp. 335-357
    • Li, F.1    Miao, Y.2    Hennig, S.D.3    Gnyp, M.L.4    Chen, X.5    Jia, L.6    Bareth, G.7
  • 33
    • 84922993215 scopus 로고    scopus 로고
    • Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression
    • Marabel, M.; Alvarez-Taboada, F. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors 2013, 13, 10027–10051. [CrossRef] [PubMed]
    • (2013) Sensors , vol.13 , pp. 10027-10051
    • Marabel, M.1    Alvarez-Taboada, F.2
  • 34
    • 85040688083 scopus 로고    scopus 로고
    • A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy
    • Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 66
    • Yue, J.1    Feng, H.2    Yang, G.3    Li, Z.4
  • 35
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 37
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 39
    • 4143062468 scopus 로고    scopus 로고
    • Forest biomass estimation over regional scales using multisource data: MAPPING FOREST BIOMASS
    • Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data: MAPPING FOREST BIOMASS. Geophys. Res. Lett. 2004, 31. [CrossRef]
    • (2004) Geophys. Res. Lett. , pp. 31
    • Baccini, A.1    Friedl, M.A.2    Woodcock, C.E.3    Warbington, R.4
  • 40
    • 78249231399 scopus 로고    scopus 로고
    • Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
    • Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [CrossRef]
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 581-590
    • Koch, B.1
  • 41
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
    • Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [CrossRef]
    • (2014) Remote Sens. Environ. , vol.154 , pp. 102-114
    • Fassnacht, F.E.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernández, J.5    Corvalán, P.6    Koch, B.7
  • 42
    • 85010645191 scopus 로고    scopus 로고
    • Estimating the Biomass of Maize with Hyperspectral and LiDAR Data
    • Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data. Remote Sens. 2016, 9, 11. [CrossRef]
    • (2016) Remote Sens , vol.9 , pp. 11
    • Wang, C.1    Nie, S.2    Xi, X.3    Luo, S.4    Sun, X.5
  • 43
    • 84965002301 scopus 로고    scopus 로고
    • Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics
    • Liu, W.; Liu, C.; Hu, X.; Yang, J.; Zheng, L. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Food Chem. 2016, 210, 415–421. [CrossRef] [PubMed]
    • (2016) Food Chem , vol.210 , pp. 415-421
    • Liu, W.1    Liu, C.2    Hu, X.3    Yang, J.4    Zheng, L.5
  • 44
  • 45
    • 85048289476 scopus 로고    scopus 로고
    • accessed on 4 May 2018
    • Ardupilot. Ardupilot Open-source Autopilot. 2018. Available online: http://ardupilot.org (accessed on 4 May 2018).
    • (2018) Ardupilot Open-Source Autopilot
  • 46
    • 85048231990 scopus 로고    scopus 로고
    • accessed on 4 May 2018
    • National Land Survey of Finland. Finnref GNSS RINEX Service. 2018. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/positioning-services/rinex-palvelu (accessed on 4 May 2018).
    • (2018) Available Online
  • 48
    • 84875574654 scopus 로고    scopus 로고
    • Practical test on accuracy and usability of virtual reference station method in Finland
    • Athens, Greece
    • Häkli, P. Practical test on accuracy and usability of virtual reference station method in Finland. In FIG Working Week; The Olympic Spirit in Surveying: Athens, Greece, 2004.
    • (2004) FIG Working Week; the Olympic Spirit in Surveying
    • Häkli, P.1
  • 49
    • 84865008271 scopus 로고    scopus 로고
    • Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery
    • Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [CrossRef]
    • (2012) Remote Sens , vol.4 , pp. 1573-1599
    • Harwin, S.1    Lucieer, A.2
  • 51
    • 84971430929 scopus 로고    scopus 로고
    • Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
    • Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [CrossRef]
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 5440-5454
    • Honkavaara, E.1    Eskelinen, M.A.2    Polonen, I.3    Saari, H.4    Ojanen, H.5    Mannila, R.6    Holmlund, C.7    Hakala, T.8    Litkey, P.9    Rosnell, T.10
  • 52
    • 84878711045 scopus 로고    scopus 로고
    • High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision
    • Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [CrossRef]
    • (2013) Remote Sens. Environ. , vol.136 , pp. 259-276
    • Dandois, J.P.1    Ellis, E.C.2
  • 53
    • 85015345065 scopus 로고    scopus 로고
    • 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys: 3-D uncertainty-based change detection for SfM surveys
    • James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys: 3-D uncertainty-based change detection for SfM surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [CrossRef]
    • (2017) Earth Surf. Process. Landf. , vol.42 , pp. 1769-1788
    • James, M.R.1    Robson, S.2    Smith, M.W.3
  • 56
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [CrossRef]
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 57
    • 85048294573 scopus 로고    scopus 로고
    • Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach
    • Méndez-Barroso, L.A.; Zárate-Valdez, J.L.; Robles-Morúa, A. Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 186–197. [CrossRef]
    • (2018) Int. J. Appl. Earth Obs. Geoinf. , vol.69 , pp. 186-197
    • Méndez-Barroso, L.A.1    Zárate-Valdez, J.L.2    Robles-Morúa, A.3
  • 58
    • 0029110322 scopus 로고
    • Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions
    • Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]
    • (1995) Trans. ASAE , vol.38 , pp. 259-269
    • Woebbecke, D.M.1    Meyer, G.E.2    von Bargen, K.3    Mortensen, D.A.4
  • 59
    • 84896137428 scopus 로고    scopus 로고
    • Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
    • Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [CrossRef]
    • (2014) Comput. Electron. Agric. , vol.103 , pp. 104-113
    • Torres-Sánchez, J.1    Peña, J.M.2    de Castro, A.I.3    López-Granados, F.4
  • 60
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]
    • (1979) Remote Sens. Environ. , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 64
    • 0002514250 scopus 로고
    • Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado
    • Ann Arbor, MI, USA, 2–6 October
    • Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; pp. 1357–1381.
    • (1972) Proceedings of the 8Th International Symposium on Remote Sensing of Environment , pp. 1357-1381
    • Pearson, R.L.1    Miller, L.D.2
  • 66
    • 0029751226 scopus 로고    scopus 로고
    • Optimization of soil-adjusted vegetation indices
    • Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [CrossRef]
    • (1996) Remote Sens. Environ. , vol.55 , pp. 95-107
    • Rondeaux, G.1    Steven, M.2    Baret, F.3
  • 67
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 68
    • 84945956589 scopus 로고    scopus 로고
    • Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure
    • Dandois, J.; Olano, M.; Ellis, E. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 13895-13920
    • Dandois, J.1    Olano, M.2    Ellis, E.3
  • 69
    • 84896315948 scopus 로고    scopus 로고
    • Direct Georeferencing of Ultrahigh-Resolution UAV Imagery
    • Turner, D.; Lucieer, A.; Wallace, L. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [CrossRef]
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 2738-2745
    • Turner, D.1    Lucieer, A.2    Wallace, L.3
  • 70
    • 80051868302 scopus 로고    scopus 로고
    • Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology
    • Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [CrossRef]
    • (2010) Remote Sens , vol.2 , pp. 2369-2387
    • Motohka, T.1    Nasahara, K.N.2    Oguma, H.3    Tsuchida, S.4
  • 71
    • 24044504080 scopus 로고    scopus 로고
    • Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status
    • Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [CrossRef]
    • (2005) Precis. Agric. , vol.6 , pp. 359-378
    • Hunt, E.R.1    Cavigelli, M.2    Daughtry, C.S.T.3    McMurtrey, J.E.4    Walthall, C.L.5
  • 72
    • 33645961585 scopus 로고    scopus 로고
    • Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage
    • Chang, K.-W.; Shen, Y.; Lo, J.-C. Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage. Agron. J. 2005, 97, 872. [CrossRef]
    • (2005) Agron. J. , vol.97 , pp. 872
    • Chang, K.-W.1    Shen, Y.2    Lo, J.-C.3
  • 73
    • 85010664812 scopus 로고    scopus 로고
    • Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure
    • Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sens. 2017, 9, 98. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 98
    • Moeckel, T.1    Safari, H.2    Reddersen, B.3    Fricke, T.4    Wachendorf, M.5
  • 74
    • 85041948569 scopus 로고    scopus 로고
    • Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands
    • Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [CrossRef]
    • (2018) Grass Forage Sci , vol.73 , pp. 1-14
    • Wachendorf, M.1    Fricke, T.2    Möckel, T.3
  • 75
    • 85048300009 scopus 로고    scopus 로고
    • accessed on 24 March 2018
    • MicaSense Parrot Sequoia Multispectral Sensor. Available online: https://www.micasense.com/parrotsequoia (accessed on 24 March 2018).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.