-
1
-
-
0033298732
-
Comparison of Three Indirect Methods for Prediction of Herbage Mass on Timothy-Meadow Fescue Pastures
-
Virkajärvi, P. Comparison of Three Indirect Methods for Prediction of Herbage Mass on Timothy-Meadow Fescue Pastures. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999, 49, 75–81. [CrossRef]
-
(1999)
Acta Agric. Scand. Sect. B Soil Plant Sci.
, vol.49
, pp. 75-81
-
-
Virkajärvi, P.1
-
2
-
-
85048301383
-
Development and validation of practical methods for determination of dry matter yield in grass silage swards
-
Helsinki, Finland, 20–24 August
-
Pakarinen, K.; Hyrkäs, M.; Juutinen, E. Development and validation of practical methods for determination of dry matter yield in grass silage swards. In Proceedings of the 12th Congress of the European Society for Agronomy, Helsinki, Finland, 20–24 August 2012; Volume 14, pp. 542–543.
-
(2012)
Proceedings of the 12Th Congress of the European Society for Agronomy
, vol.14
, pp. 542-543
-
-
Pakarinen, K.1
Hyrkäs, M.2
Juutinen, E.3
-
3
-
-
84971645573
-
Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry
-
Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [CrossRef]
-
(2016)
Remote Sens. Environ.
, vol.183
, pp. 129-143
-
-
Cunliffe, A.M.1
Brazier, R.E.2
Anderson, K.3
-
4
-
-
0035159486
-
Leaf dynamics of timothy and meadow fescue under Nordic conditions
-
Virkajarvi, P.; Jarvenranta, K. Leaf dynamics of timothy and meadow fescue under Nordic conditions. Grass Forage Sci. 2001, 56, 294–304. [CrossRef]
-
(2001)
Grass Forage Sci
, vol.56
, pp. 294-304
-
-
Virkajarvi, P.1
Jarvenranta, K.2
-
5
-
-
84990803705
-
A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass
-
Tucker, C.J. A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass. Grass Forage Sci. 1980, 35, 177–182. [CrossRef]
-
(1980)
Grass Forage Sci
, vol.35
, pp. 177-182
-
-
Tucker, C.J.1
-
6
-
-
0035659229
-
Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler
-
Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler. Agron. J. 2001, 93, 1281–1286. [CrossRef]
-
(2001)
Agron. J.
, vol.93
, pp. 1281-1286
-
-
Sanderson, M.A.1
Rotz, C.A.2
Fultz, S.W.3
Rayburn, E.B.4
-
8
-
-
84922032621
-
Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors
-
Pittman, J.; Arnall, D.; Interrante, S.; Moffet, C.; Butler, T. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors. Sensors 2015, 15, 2920–2943. [CrossRef] [PubMed]
-
(2015)
Sensors
, vol.15
, pp. 2920-2943
-
-
Pittman, J.1
Arnall, D.2
Interrante, S.3
Moffet, C.4
Butler, T.5
-
9
-
-
84893378068
-
Spatial variability detection of crop height in a single field by terrestrial laser scanning
-
Stafford, J.V., Ed.; Wageningen Academic: Lleida, Spain
-
Hoffmeister, D.; Waldhoff, G.; Curdt, C.; Tilly, N.; Bendig, J.; Bareth, G. Spatial variability detection of crop height in a single field by terrestrial laser scanning. In Precision Agriculture ’13: Papers Presented at the 9th European Conference on Precision Agriculture; Stafford, J.V., Ed.; Wageningen Academic: Lleida, Spain, 2013; pp. 267–274.
-
(2013)
Precision Agriculture ’13: Papers Presented at the 9Th European Conference on Precision Agriculture
, pp. 267-274
-
-
Hoffmeister, D.1
Waldhoff, G.2
Curdt, C.3
Tilly, N.4
Bendig, J.5
Bareth, G.6
-
10
-
-
84896285330
-
Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice
-
Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [CrossRef]
-
(2014)
J. Appl. Remote Sens.
, vol.8
-
-
Tilly, N.1
Hoffmeister, D.2
Cao, Q.3
Huang, S.4
Lenz-Wiedemann, V.5
Miao, Y.6
Bareth, G.7
-
11
-
-
84868629775
-
The application of small unmanned aerial systems for precision agriculture: A review
-
Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [CrossRef]
-
(2012)
Precis. Agric.
, vol.13
, pp. 693-712
-
-
Zhang, C.1
Kovacs, J.M.2
-
12
-
-
84892621633
-
UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen
-
Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen. Photogramm. Fernerkund. Geoinf. 2013, 551–562. [CrossRef]
-
(2013)
Photogramm. Fernerkund. Geoinf.
, pp. 551-562
-
-
Bendig, J.1
Bolten, A.2
Bareth, G.3
-
13
-
-
84912124929
-
Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging
-
Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [CrossRef]
-
(2014)
Remote Sens
, vol.6
, pp. 10395-10412
-
-
Bendig, J.1
Bolten, A.2
Bennertz, S.3
Broscheit, J.4
Eichfuss, S.5
Bareth, G.6
-
14
-
-
84961989773
-
Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
-
Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [CrossRef]
-
(2016)
Ecol. Indic.
, vol.67
, pp. 637-648
-
-
Li, W.1
Niu, Z.2
Chen, H.3
Li, D.4
Wu, M.5
Zhao, W.6
-
15
-
-
84894272759
-
Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds
-
Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 53–62. [CrossRef]
-
(2014)
Int. J. Appl. Earth Obs. Geoinf.
, vol.27
, pp. 53-62
-
-
Lucieer, A.1
Turner, D.2
King, D.H.3
Robinson, S.A.4
-
16
-
-
85048278466
-
Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling
-
Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.; Robinson, S.A. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 168–179. [CrossRef]
-
(2018)
Int. J. Appl. Earth Obs. Geoinf.
, vol.68
, pp. 168-179
-
-
Turner, D.1
Lucieer, A.2
Malenovský, Z.3
King, D.4
Robinson, S.A.5
-
17
-
-
61349186319
-
Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
-
Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, pp. 722-738
-
-
Berni, J.1
Zarco-Tejada, P.J.2
Suarez, L.3
Fereres, E.4
-
18
-
-
77956640482
-
Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring
-
Hunt, E.R.; Hively, W.D.; Fujikawa, S.; Linden, D.; Daughtry, C.S.; McCarty, G. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [CrossRef]
-
(2010)
Remote Sens
, vol.2
, pp. 290-305
-
-
Hunt, E.R.1
Hively, W.D.2
Fujikawa, S.3
Linden, D.4
Daughtry, C.S.5
McCarty, G.6
-
19
-
-
84937860942
-
Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images
-
Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 4026-4047
-
-
Candiago, S.1
Remondino, F.2
de Giglio, M.3
Dubbini, M.4
Gattelli, M.5
-
20
-
-
84990202914
-
A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation
-
Geipel, J.; Link, J.; Wirwahn, J.; Claupein, W. A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6, 4. [CrossRef]
-
(2016)
Agriculture
, vol.6
, pp. 4
-
-
Geipel, J.1
Link, J.2
Wirwahn, J.3
Claupein, W.4
-
21
-
-
84855428733
-
Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
-
Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [CrossRef]
-
(2012)
Remote Sens. Environ.
, vol.117
, pp. 322-337
-
-
Zarco-Tejada, P.J.1
González-Dugo, V.2
Berni, J.A.J.3
-
22
-
-
84887537551
-
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
-
Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [CrossRef]
-
(2013)
Remote Sens
, vol.5
, pp. 5006-5039
-
-
Honkavaara, E.1
Saari, H.2
Kaivosoja, J.3
Pölönen, I.4
Hakala, T.5
Litkey, P.6
Mäkynen, J.7
Pesonen, L.8
-
23
-
-
84941263991
-
Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
-
Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [CrossRef]
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.108
, pp. 245-259
-
-
Aasen, H.1
Burkart, A.2
Bolten, A.3
Bareth, G.4
-
24
-
-
85022320211
-
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
-
Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 708
-
-
Yue, J.1
Yang, G.2
Li, C.3
Li, Z.4
Wang, Y.5
Feng, H.6
Xu, B.7
-
25
-
-
84939454114
-
Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
-
Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [CrossRef]
-
(2015)
Int. J. Appl. Earth Obs. Geoinf.
, vol.39
, pp. 79-87
-
-
Bendig, J.1
Yu, K.2
Aasen, H.3
Bolten, A.4
Bennertz, S.5
Broscheit, J.6
Gnyp, M.L.7
Bareth, G.8
-
26
-
-
84930936368
-
A multi-sensor approach for predicting biomass of extensively managed grassland
-
Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [CrossRef]
-
(2014)
Comput. Electron. Agric.
, vol.109
, pp. 247-260
-
-
Reddersen, B.1
Fricke, T.2
Wachendorf, M.3
-
27
-
-
84886865428
-
Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards
-
Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards. Comput. Electron. Agric. 2013, 99, 236–247. [CrossRef]
-
(2013)
Comput. Electron. Agric.
, vol.99
, pp. 236-247
-
-
Fricke, T.1
Wachendorf, M.2
-
28
-
-
84942540720
-
Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass
-
Tilly, N.; Aasen, H.; Bareth, G. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass. Remote Sens. 2015, 7, 11449–11480. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 11449-11480
-
-
Tilly, N.1
Aasen, H.2
Bareth, G.3
-
29
-
-
84979504703
-
Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE)
-
Bareth, G.; Bolten, A.; Hollberg, J.; Aasen, H.; Burkart, A.; Schellberg, J. Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE), Germany. DGPF Tag. 2015, 24, 1–7.
-
(2015)
Germany. DGPF Tag.
, vol.24
, pp. 1-7
-
-
Bareth, G.1
Bolten, A.2
Hollberg, J.3
Aasen, H.4
Burkart, A.5
Schellberg, J.6
-
30
-
-
84872813671
-
A visible band index for remote sensing leaf chlorophyll content at the canopy scale
-
Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [CrossRef]
-
(2013)
Int. J. Appl. Earth Obs. Geoinf.
, vol.21
, pp. 103-112
-
-
Hunt, E.R.1
Doraiswamy, P.C.2
McMurtrey, J.E.3
Daughtry, C.S.T.4
Perry, E.M.5
Akhmedov, B.6
-
31
-
-
77954145922
-
Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages
-
Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010, 11, 335–357. [CrossRef]
-
(2010)
Precis. Agric.
, vol.11
, pp. 335-357
-
-
Li, F.1
Miao, Y.2
Hennig, S.D.3
Gnyp, M.L.4
Chen, X.5
Jia, L.6
Bareth, G.7
-
32
-
-
84987851381
-
Multi-temporal crop surface models combined with the rgb vegetation index from uav-based images for forage monitoring in grassland
-
XLI-B1, 991–998. [CrossRef
-
Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-temporal crop surface models combined with the rgb vegetation index from uav-based images for forage monitoring in grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 991–998. [CrossRef]
-
(2016)
ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
-
-
Possoch, M.1
Bieker, S.2
Hoffmeister, D.3
Bolten, A.4
Schellberg, J.5
Bareth, G.6
-
33
-
-
84922993215
-
Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression
-
Marabel, M.; Alvarez-Taboada, F. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors 2013, 13, 10027–10051. [CrossRef] [PubMed]
-
(2013)
Sensors
, vol.13
, pp. 10027-10051
-
-
Marabel, M.1
Alvarez-Taboada, F.2
-
34
-
-
85040688083
-
A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy
-
Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [CrossRef]
-
(2018)
Remote Sens
, vol.10
, pp. 66
-
-
Yue, J.1
Feng, H.2
Yang, G.3
Li, Z.4
-
35
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
36
-
-
30344471525
-
Random Forests for land cover classification
-
Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [CrossRef]
-
(2006)
Pattern Recognit. Lett.
, vol.27
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
37
-
-
84961834117
-
Random forest in remote sensing: A review of applications and future directions
-
Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăguţ, L.2
-
38
-
-
85007478149
-
An assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series
-
Beijing, China, 10–15 July
-
Pelletier, C.; Valero, S.; Inglada, J.; Dedieu, G.; Champion, N. An assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3338–3341.
-
(2016)
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3338-3341
-
-
Pelletier, C.1
Valero, S.2
Inglada, J.3
Dedieu, G.4
Champion, N.5
-
39
-
-
4143062468
-
Forest biomass estimation over regional scales using multisource data: MAPPING FOREST BIOMASS
-
Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data: MAPPING FOREST BIOMASS. Geophys. Res. Lett. 2004, 31. [CrossRef]
-
(2004)
Geophys. Res. Lett.
, pp. 31
-
-
Baccini, A.1
Friedl, M.A.2
Woodcock, C.E.3
Warbington, R.4
-
40
-
-
78249231399
-
Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
-
Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [CrossRef]
-
(2010)
ISPRS J. Photogramm. Remote Sens.
, vol.65
, pp. 581-590
-
-
Koch, B.1
-
41
-
-
84908097106
-
Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
-
Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [CrossRef]
-
(2014)
Remote Sens. Environ.
, vol.154
, pp. 102-114
-
-
Fassnacht, F.E.1
Hartig, F.2
Latifi, H.3
Berger, C.4
Hernández, J.5
Corvalán, P.6
Koch, B.7
-
42
-
-
85010645191
-
Estimating the Biomass of Maize with Hyperspectral and LiDAR Data
-
Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data. Remote Sens. 2016, 9, 11. [CrossRef]
-
(2016)
Remote Sens
, vol.9
, pp. 11
-
-
Wang, C.1
Nie, S.2
Xi, X.3
Luo, S.4
Sun, X.5
-
43
-
-
84965002301
-
Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics
-
Liu, W.; Liu, C.; Hu, X.; Yang, J.; Zheng, L. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Food Chem. 2016, 210, 415–421. [CrossRef] [PubMed]
-
(2016)
Food Chem
, vol.210
, pp. 415-421
-
-
Liu, W.1
Liu, C.2
Hu, X.3
Yang, J.4
Zheng, L.5
-
45
-
-
85048289476
-
-
accessed on 4 May 2018
-
Ardupilot. Ardupilot Open-source Autopilot. 2018. Available online: http://ardupilot.org (accessed on 4 May 2018).
-
(2018)
Ardupilot Open-Source Autopilot
-
-
-
46
-
-
85048231990
-
-
accessed on 4 May 2018
-
National Land Survey of Finland. Finnref GNSS RINEX Service. 2018. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/positioning-services/rinex-palvelu (accessed on 4 May 2018).
-
(2018)
Available Online
-
-
-
48
-
-
84875574654
-
Practical test on accuracy and usability of virtual reference station method in Finland
-
Athens, Greece
-
Häkli, P. Practical test on accuracy and usability of virtual reference station method in Finland. In FIG Working Week; The Olympic Spirit in Surveying: Athens, Greece, 2004.
-
(2004)
FIG Working Week; the Olympic Spirit in Surveying
-
-
Häkli, P.1
-
49
-
-
84865008271
-
Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery
-
Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [CrossRef]
-
(2012)
Remote Sens
, vol.4
, pp. 1573-1599
-
-
Harwin, S.1
Lucieer, A.2
-
51
-
-
84971430929
-
Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
-
Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [CrossRef]
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 5440-5454
-
-
Honkavaara, E.1
Eskelinen, M.A.2
Polonen, I.3
Saari, H.4
Ojanen, H.5
Mannila, R.6
Holmlund, C.7
Hakala, T.8
Litkey, P.9
Rosnell, T.10
-
52
-
-
84878711045
-
High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision
-
Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [CrossRef]
-
(2013)
Remote Sens. Environ.
, vol.136
, pp. 259-276
-
-
Dandois, J.P.1
Ellis, E.C.2
-
53
-
-
85015345065
-
3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys: 3-D uncertainty-based change detection for SfM surveys
-
James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys: 3-D uncertainty-based change detection for SfM surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [CrossRef]
-
(2017)
Earth Surf. Process. Landf.
, vol.42
, pp. 1769-1788
-
-
James, M.R.1
Robson, S.2
Smith, M.W.3
-
55
-
-
84959353730
-
Accuracy assessment of High Resolution Satellite Imagery by Leave-one-out method
-
Lisbon, Portugal, 5–7 July, accessed on 27 April 2018
-
Brovelli, M.A.; Mattia, C.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy assessment of High Resolution Satellite Imagery by Leave-one-out method. In Proceedings of the 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, Portugal, 5–7 July 2006; Available online: http://www.spatial-accuracy.org/system/files/Brovelli2006accuracy.pdf (accessed on 27 April 2018).
-
(2006)
Proceedings of the 7Th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences
-
-
Brovelli, M.A.1
Mattia, C.2
Fratarcangeli, F.3
Giannone, F.4
Realini, E.5
-
56
-
-
0032732676
-
The use of the empirical line method to calibrate remotely sensed data to reflectance
-
Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [CrossRef]
-
(1999)
Int. J. Remote Sens.
, vol.20
, pp. 2653-2662
-
-
Smith, G.M.1
Milton, E.J.2
-
57
-
-
85048294573
-
Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach
-
Méndez-Barroso, L.A.; Zárate-Valdez, J.L.; Robles-Morúa, A. Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 186–197. [CrossRef]
-
(2018)
Int. J. Appl. Earth Obs. Geoinf.
, vol.69
, pp. 186-197
-
-
Méndez-Barroso, L.A.1
Zárate-Valdez, J.L.2
Robles-Morúa, A.3
-
58
-
-
0029110322
-
Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions
-
Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]
-
(1995)
Trans. ASAE
, vol.38
, pp. 259-269
-
-
Woebbecke, D.M.1
Meyer, G.E.2
von Bargen, K.3
Mortensen, D.A.4
-
59
-
-
84896137428
-
Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
-
Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [CrossRef]
-
(2014)
Comput. Electron. Agric.
, vol.103
, pp. 104-113
-
-
Torres-Sánchez, J.1
Peña, J.M.2
de Castro, A.I.3
López-Granados, F.4
-
60
-
-
0018465733
-
Red and photographic infrared linear combinations for monitoring vegetation
-
Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]
-
(1979)
Remote Sens. Environ.
, vol.8
, pp. 127-150
-
-
Tucker, C.J.1
-
61
-
-
0032636094
-
-
Meyer, G.E., DeShazer, J.A., Eds.; University of Nebraska: Lincoln, NE, USA
-
Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine Vision Detection Parameters for Plant Species Identification; Meyer, G.E., DeShazer, J.A., Eds.; University of Nebraska: Lincoln, NE, USA, 1999; pp. 327–335.
-
(1999)
Machine Vision Detection Parameters for Plant Species Identification
, pp. 327-335
-
-
Meyer, G.E.1
Hindman, T.W.2
Laksmi, K.3
-
63
-
-
24344476424
-
-
Symposium 1; NASA: Washington, DC, USA
-
Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Third Earth Resources Technology Satellite, Symposium 1; NASA: Washington, DC, USA, 1974; p. 309.
-
(1974)
Monitoring Vegetation Systems in the Great Plains with ERTS; Third Earth Resources Technology Satellite
, pp. 309
-
-
Rouse, J.W.1
Haas, R.H.2
Schell, J.A.3
Deering, D.W.4
-
64
-
-
0002514250
-
Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado
-
Ann Arbor, MI, USA, 2–6 October
-
Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; pp. 1357–1381.
-
(1972)
Proceedings of the 8Th International Symposium on Remote Sensing of Environment
, pp. 1357-1381
-
-
Pearson, R.L.1
Miller, L.D.2
-
65
-
-
0028431038
-
A modified soil adjusted vegetation index
-
Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [CrossRef]
-
(1994)
Remote Sens. Environ.
, vol.48
, pp. 119-126
-
-
Qi, J.1
Chehbouni, A.2
Huete, A.R.3
Kerr, Y.H.4
Sorooshian, S.5
-
66
-
-
0029751226
-
Optimization of soil-adjusted vegetation indices
-
Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [CrossRef]
-
(1996)
Remote Sens. Environ.
, vol.55
, pp. 95-107
-
-
Rondeaux, G.1
Steven, M.2
Baret, F.3
-
67
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
68
-
-
84945956589
-
Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure
-
Dandois, J.; Olano, M.; Ellis, E. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 13895-13920
-
-
Dandois, J.1
Olano, M.2
Ellis, E.3
-
69
-
-
84896315948
-
Direct Georeferencing of Ultrahigh-Resolution UAV Imagery
-
Turner, D.; Lucieer, A.; Wallace, L. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [CrossRef]
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, pp. 2738-2745
-
-
Turner, D.1
Lucieer, A.2
Wallace, L.3
-
70
-
-
80051868302
-
Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology
-
Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [CrossRef]
-
(2010)
Remote Sens
, vol.2
, pp. 2369-2387
-
-
Motohka, T.1
Nasahara, K.N.2
Oguma, H.3
Tsuchida, S.4
-
71
-
-
24044504080
-
Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status
-
Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [CrossRef]
-
(2005)
Precis. Agric.
, vol.6
, pp. 359-378
-
-
Hunt, E.R.1
Cavigelli, M.2
Daughtry, C.S.T.3
McMurtrey, J.E.4
Walthall, C.L.5
-
72
-
-
33645961585
-
Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage
-
Chang, K.-W.; Shen, Y.; Lo, J.-C. Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage. Agron. J. 2005, 97, 872. [CrossRef]
-
(2005)
Agron. J.
, vol.97
, pp. 872
-
-
Chang, K.-W.1
Shen, Y.2
Lo, J.-C.3
-
73
-
-
85010664812
-
Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure
-
Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sens. 2017, 9, 98. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 98
-
-
Moeckel, T.1
Safari, H.2
Reddersen, B.3
Fricke, T.4
Wachendorf, M.5
-
74
-
-
85041948569
-
Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands
-
Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [CrossRef]
-
(2018)
Grass Forage Sci
, vol.73
, pp. 1-14
-
-
Wachendorf, M.1
Fricke, T.2
Möckel, T.3
-
75
-
-
85048300009
-
-
accessed on 24 March 2018
-
MicaSense Parrot Sequoia Multispectral Sensor. Available online: https://www.micasense.com/parrotsequoia (accessed on 24 March 2018).
-
-
-
|