메뉴 건너뛰기




Volumn 10, Issue 5, 2018, Pages

Online hashing for scalable remote sensing image retrieval

Author keywords

Hashing; Online learning; Remote sensing image retrieval

Indexed keywords

E-LEARNING; HASH FUNCTIONS; IMAGE ENHANCEMENT; REMOTE SENSING;

EID: 85047549576     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10050709     Document Type: Article
Times cited : (28)

References (40)
  • 2
    • 84901921955 scopus 로고    scopus 로고
    • Statistical quantization for similarity search
    • Wang, Q.; Zhu, G.; Yuan, Y. Statistical quantization for similarity search. Comput. Vis. Image Underst. 2014, 124, 22-30
    • (2014) Comput. Vis. Image Underst , vol.124 , pp. 22-30
    • Wang, Q.1    Zhu, G.2    Yuan, Y.3
  • 3
    • 84925784649 scopus 로고    scopus 로고
    • An improved Bag-of-Words framework for remote sensing image retrieval in large-scale image databases
    • Yang, J.; Liu, J.; Dai, Q. An improved Bag-of-Words framework for remote sensing image retrieval in large-scale image databases. Int. J. Digit. Earth 2015, 8, 273-292
    • (2015) Int. J. Digit. Earth , vol.8 , pp. 273-292
    • Yang, J.1    Liu, J.2    Dai, Q.3
  • 4
    • 84919877609 scopus 로고    scopus 로고
    • Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs
    • Sevilla, J.; Bernabe, S.; Plaza, A. Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs. J. Supercomput. 2014, 70, 588-599
    • (2014) J. Supercomput , vol.70 , pp. 588-599
    • Sevilla, J.1    Bernabe, S.2    Plaza, A.3
  • 5
    • 84872918592 scopus 로고    scopus 로고
    • Geographic image retrieval using local invariant features
    • Yang, Y.; Newsam, S. Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 2013, 51, 818-832
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 818-832
    • Yang, Y.1    Newsam, S.2
  • 6
    • 84896319674 scopus 로고    scopus 로고
    • Remote sensing image retrieval with global morphological texture descriptors
    • Aptoula, E. Remote sensing image retrieval with global morphological texture descriptors. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3023-3034
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 3023-3034
    • Aptoula, E.1
  • 7
    • 0742320815 scopus 로고    scopus 로고
    • Using texture to analyze and manage large collections of remote sensed image and video data
    • Newsam, S.;Wang, L.; Bhagavathy, S.; Manjunath, B.S. Using texture to analyze and manage large collections of remote sensed image and video data. Appl. Opt. 2004, 43, 210-217
    • (2004) Appl. Opt , vol.43 , pp. 210-217
    • Newsam, S.1    Wang, L.2    Bhagavathy, S.3    Manjunath, B.S.4
  • 8
    • 48349133650 scopus 로고    scopus 로고
    • Indexing of satellite images with different resolutions by wavelet features
    • Luo, B.; Aujol, J.F.; Gousseau, Y.; Ladjal, S. Indexing of satellite images with different resolutions by wavelet features. IEEE Trans. Image Process. 2008, 17, 1465-1472
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 1465-1472
    • Luo, B.1    Aujol, J.F.2    Gousseau, Y.3    Ladjal, S.4
  • 10
    • 84940766118 scopus 로고    scopus 로고
    • High-resolution remotesensing imagery retrieval using sparse features by auto-encoder
    • Zhou, W.; Shao, Z.; Diao, C.; Cheng, Q. High-resolution remotesensing imagery retrieval using sparse features by auto-encoder. Remote Sens. Lett. 2015, 6, 775-783
    • (2015) Remote Sens. Lett , vol.6 , pp. 775-783
    • Zhou, W.1    Shao, Z.2    Diao, C.3    Cheng, Q.4
  • 11
    • 85019848798 scopus 로고    scopus 로고
    • Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval
    • Zhou, W.; Newsam, S.; Li, C.; Shao, Z. Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sens. 2017, 9, 489
    • (2017) Remote Sens , vol.9 , pp. 489
    • Zhou, W.1    Newsam, S.2    Li, C.3    Shao, Z.4
  • 12
    • 84977566735 scopus 로고    scopus 로고
    • Local structure learning in high resolution remote sensing image retrieval
    • Du, Z.; Li, X.; Lu, X. Local structure learning in high resolution remote sensing image retrieval. Neurocomputing 2016, 207, 813-822
    • (2016) Neurocomputing , vol.207 , pp. 813-822
    • Du, Z.1    Li, X.2    Lu, X.3
  • 14
    • 85019770658 scopus 로고    scopus 로고
    • Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion
    • Li, Y.; Zhang, Y.; Tao, C.; Zhu, H. Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion. Remote Sens. 2016, 8, 709
    • (2016) Remote Sens , vol.8 , pp. 709
    • Li, Y.1    Zhang, Y.2    Tao, C.3    Zhu, H.4
  • 20
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Gong, Y.; Lazebnik, S. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2916-2929
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2
  • 31
    • 84942037053 scopus 로고    scopus 로고
    • Hashing-based scalable remote sensing image search and retrieval in large archives
    • Demir, B.; Bruzzone, L. Hashing-based scalable remote sensing image search and retrieval in large archives. IEEE Trans. Geosci. Remote Sens. 2016, 54, 892-904
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 892-904
    • Demir, B.1    Bruzzone, L.2
  • 32
    • 85011309163 scopus 로고    scopus 로고
    • Partial randomness hashing for large-scale remote sensing image retrieval
    • Li, P.; Ren, P. Partial randomness hashing for large-scale remote sensing image retrieval. IEEE Geosci. Remote Sens. Lett. 2017, 14, 464-468
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 464-468
    • Li, P.1    Ren, P.2
  • 33
    • 85041331909 scopus 로고    scopus 로고
    • Large-scale remote sensing image retrieval by deep hashing neural networks
    • Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-scale remote sensing image retrieval by deep hashing neural networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 950-965
    • (2018) IEEE Trans. Geosci. Remote Sens , vol.56 , pp. 950-965
    • Li, Y.1    Zhang, Y.2    Huang, X.3    Zhu, H.4    Ma, J.5
  • 34
    • 85044606266 scopus 로고    scopus 로고
    • Multiple feature hashing learning for large-scale remote sensing image retrieval
    • Ye, D.; Li, Y.; Tao, C.; Xie, X.;Wang, X. Multiple feature hashing learning for large-scale remote sensing image retrieval. ISPRS Int. J. Geo-Inform. 2017, 6, 364
    • (2017) ISPRS Int. J. Geo-Inform , vol.6 , pp. 364
    • Ye, D.1    Li, Y.2    Tao, C.3    Xie, X.4    Wang, X.5
  • 37
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • Liang, N.; Huang, G.; Saratchandran, P.; Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17, 1411-1423
    • (2006) IEEE Trans. Neural Netw , vol.17 , pp. 1411-1423
    • Liang, N.1    Huang, G.2    Saratchandran, P.3    Sundararajan, N.4
  • 38
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 40
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the sence: A holistic representation of spatial envelope
    • Oliva, A.; Torralba, A. Modeling the shape of the sence: A holistic representation of spatial envelope. Int. J. Comput. Vis. 2001, 42, 145-175
    • (2001) Int. J. Comput. Vis , vol.42 , pp. 145-175
    • Oliva, A.1    Torralba, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.