메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages

Selecting optimal SLIC superpixels parameters by using discrepancy measures

Author keywords

Discrepancy measures; OBIA; Segmentation; SLIC; Superpixel

Indexed keywords

ITERATIVE METHODS; PIXELS; QUALITY CONTROL; REMOTE SENSING; SPACE APPLICATIONS; SPACE OPTICS; SUPERPIXELS;

EID: 85047379699     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (22)
  • 5
    • 84908070467 scopus 로고    scopus 로고
    • Optimal segmentation of a high-resolution remote-sensing image guided by area and boundary
    • Chen, J., Deng, M., Mei, X., Chen, T., Shao, Q., and Hong, L., 2014. Optimal segmentation of a high-resolution remote-sensing image guided by area and boundary. International Journal of Remote Sensing, 35(19), pp. 6914–6939.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.19 , pp. 6914-6939
    • Chen, J.1    Deng, M.2    Mei, X.3    Chen, T.4    Shao, Q.5    Hong, L.6
  • 8
    • 85037538164 scopus 로고    scopus 로고
    • Improving the speed of multiresolution segmentation using SLIC superpixels
    • 14-16 September 2016, University of Twente
    • Csillik, O., and Lang, S., 2016. Improving the speed of multiresolution segmentation using SLIC superpixels. In: GEOBIA 2016: Solutions and Synergies. 14-16 September 2016, University of Twente.
    • (2016) GEOBIA 2016: Solutions and Synergies
    • Csillik, O.1    Lang, S.2
  • 9
    • 85017657736 scopus 로고    scopus 로고
    • Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels
    • Csillik, O., 2017. Fast Segmentation and classification of very high resolution remote sensing data using SLIC Superpixels. Remote Sensing, 9(3), 243.
    • (2017) Remote Sensing , vol.9 , Issue.3 , pp. 243
    • Csillik, O.1
  • 12
    • 85032331266 scopus 로고    scopus 로고
    • Object-oriented random forest for high resolution land cover mapping using quickbird-2 imagery
    • edited by Samui, Roy, SS., Balas, E., Elsevier, Amsterdam
    • Kavzoglu, T., 2017. Object-oriented random forest for high resolution land cover mapping using Quickbird-2 imagery. In: Handbook of Neural Computation, edited by Samui, P., Roy, SS., Balas, V.E., Elsevier, Amsterdam, pp. 607-619.
    • (2017) Handbook of Neural Computation , pp. 607-619
    • Kavzoglu, T.1
  • 13
    • 84979511076 scopus 로고    scopus 로고
    • Parameter-based performance analysis of object- Based image analysis using aerial and quickbird 2-images
    • Istanbul
    • Kavzoglu T., and Yildiz M., 2014. Parameter-based performance analysis of object- based image analysis using aerial and Quickbird 2-images, ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, Istanbul, Vol. II-7, pp. 31-37
    • (2014) ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences , vol.II-7 , pp. 31-37
    • Kavzoglu, T.1    Yildiz, M.2
  • 15
    • 85029769564 scopus 로고    scopus 로고
    • Classification of semi-urban landscapes from VHR satellite images using a novel regionalized multi-scale segmentation approach
    • 2017
    • Kavzoglu, T., Yildiz Erdemir, M., and Tonbul, H., 2017. Classification of semi-urban landscapes from VHR satellite images using a novel regionalized multi-scale segmentation approach, Journal of Applied Remote Sensing, 11(3), 035016 (2017). doi:10.1117/1.JRS.11.035016.
    • (2017) Journal of Applied Remote Sensing , vol.11 , Issue.3 , pp. 035016
    • Kavzoglu, T.1    Yildiz Erdemir, M.2    Tonbul, H.3
  • 17
    • 84992153966 scopus 로고    scopus 로고
    • Region-of-interest detection via superpixel-to-pixel saliency analysis for remote sensing image
    • Ma, L., Du, B., Chen, H., Soomro, N.Q., 2016. Region-of-interest detection via superpixel-to-pixel saliency analysis for remote sensing image. IEEE Geoscience and Remote Sensing Letters, 13(12), pp. 1752–1756.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.12 , pp. 1752-1756
    • Ma, L.1    Du, B.2    Chen, H.3    Soomro, N.Q.4
  • 19
    • 85010694754 scopus 로고    scopus 로고
    • AssesSeg – A command line tool to quantify image segmentation quality: A test carried out in southern Spain from satellite imagery
    • Novelli, A., Aguilar, M.A., Aguilar, F.J., Nemmaoui, A., and Tarantino, E., 2017. AssesSeg – A command line tool to quantify image segmentation quality: a test carried out in southern Spain from satellite imagery. Remote Sensing, 9(1), pp. 1–11.
    • (2017) Remote Sensing , vol.9 , Issue.1 , pp. 1-11
    • Novelli, A.1    Aguilar, M.A.2    Aguilar, F.J.3    Nemmaoui, A.4    Tarantino, E.5
  • 21
    • 84920934323 scopus 로고    scopus 로고
    • A discrepancy measure for segmentation evaluation from the perspective of object recognition
    • Yang, J., He, Y., Caspersen, J., Jones, T., 2015. A discrepancy measure for segmentation evaluation from the perspective of object recognition. ISPRS Journal Photogrammetry and Remote Sensing, 101, pp.186–192
    • (2015) ISPRS Journal Photogrammetry and Remote Sensing , vol.101 , pp. 186-192
    • Yang, J.1    He, Y.2    Caspersen, J.3    Jones, T.4
  • 22
    • 84922378744 scopus 로고    scopus 로고
    • Segmentation quality evaluation using region-based precision and recall measures for remote sensing images
    • Zhang, X., Feng, X., Xiao, P., He, G., and Zhu, L., 2015. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS Journal Photogrammetry and Remote Sensing, 102, pp. 73–84.
    • (2015) ISPRS Journal Photogrammetry and Remote Sensing , vol.102 , pp. 73-84
    • Zhang, X.1    Feng, X.2    Xiao, P.3    He, G.4    Zhu, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.