메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 1429-1439

Online convex optimization with stochastic constraints

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINED OPTIMIZATION; CONVEX OPTIMIZATION; DECISION MAKING; PROBLEM SOLVING;

EID: 85047010139     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (211)

References (29)
  • 3
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
    • Nicolò Cesa-Bianchi, Philip M Long, and Manfred K Warmuth. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3):604-619, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.3 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.M.2    Warmuth, M.K.3
  • 10
    • 0001108744 scopus 로고
    • Hitting-time and occupation-time bounds implied by drift analysis with applications
    • Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability, 14(3):502-525, 1982.
    • (1982) Advances in Applied Probability , vol.14 , Issue.3 , pp. 502-525
    • Hajek, B.1
  • 11
    • 85018868676 scopus 로고    scopus 로고
    • Introduction to online convex optimization
    • Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3-4):157-325, 2016.
    • (2016) Foundations and Trends in Optimization , vol.2 , Issue.3-4 , pp. 157-325
    • Hazan, E.1
  • 12
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69:169-192, 2007.
    • (2007) Machine Learning , vol.69 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 14
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-63, 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 16
    • 84869152925 scopus 로고    scopus 로고
    • Trading regret for efficiency: Online convex optimization with long term constraints
    • Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online convex optimization with long term constraints. Journal of Machine Learning Research, 13(1):2503-2528, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 2503-2528
    • Mahdavi, M.1    Jin, R.2    Yang, T.3
  • 20
    • 84937890749 scopus 로고    scopus 로고
    • Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs
    • Michael J. Neely. Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs. IEEE/ACM Transactions on Networking, 24(4):2223-2236, 2016.
    • (2016) IEEE/ACM Transactions on Networking , vol.24 , Issue.4 , pp. 2223-2236
    • Neely, M.J.1
  • 24
    • 84922954453 scopus 로고    scopus 로고
    • Random matrices: Universality of local spectral statistics of non-hermitian matrices
    • Terence Tao and Van Vu. Random matrices: universality of local spectral statistics of non-hermitian matrices. The Annals of Probability, 43(2):782-874, 2015.
    • (2015) The Annals of Probability , vol.43 , Issue.2 , pp. 782-874
    • Tao, T.1    Vu, V.2
  • 26
    • 0036099749 scopus 로고    scopus 로고
    • Concentration of non-lipschitz functions and applications
    • Van Vu. Concentration of non-lipschitz functions and applications. Random Structures & Algorithms, 20(3):262-316, 2002.
    • (2002) Random Structures & Algorithms , vol.20 , Issue.3 , pp. 262-316
    • Van Vu1
  • 28
    • 85021710810 scopus 로고    scopus 로고
    • A simple parallel algorithm with an O(1/t) convergence rate for general convex programs
    • Hao Yu and Michael J. Neely. A simple parallel algorithm with an O(1/t) convergence rate for general convex programs. SIAM Journal on Optimization, 27(2):759-783, 2017.
    • (2017) SIAM Journal on Optimization , vol.27 , Issue.2 , pp. 759-783
    • Yu, H.1    Neely, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.