-
2
-
-
80555137396
-
High-probability regret bounds for bandit online linear optimization
-
Peter L Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin, and Ambuj Tewari. High-probability regret bounds for bandit online linear optimization. In Proceedings of Conference on Learning Theory (COLT), 2008.
-
(2008)
Proceedings of Conference on Learning Theory (COLT)
-
-
Bartlett, P.L.1
Dani, V.2
Hayes, T.3
Kakade, S.4
Rakhlin, A.5
Tewari, A.6
-
3
-
-
0030145382
-
Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
-
Nicolò Cesa-Bianchi, Philip M Long, and Manfred K Warmuth. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3):604-619, 1996.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.3
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.M.2
Warmuth, M.K.3
-
10
-
-
0001108744
-
Hitting-time and occupation-time bounds implied by drift analysis with applications
-
Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability, 14(3):502-525, 1982.
-
(1982)
Advances in Applied Probability
, vol.14
, Issue.3
, pp. 502-525
-
-
Hajek, B.1
-
11
-
-
85018868676
-
Introduction to online convex optimization
-
Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3-4):157-325, 2016.
-
(2016)
Foundations and Trends in Optimization
, vol.2
, Issue.3-4
, pp. 157-325
-
-
Hazan, E.1
-
12
-
-
35348918820
-
Logarithmic regret algorithms for online convex optimization
-
Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69:169-192, 2007.
-
(2007)
Machine Learning
, vol.69
, pp. 169-192
-
-
Hazan, E.1
Agarwal, A.2
Kale, S.3
-
14
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-63, 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-63
-
-
Kivinen, J.1
Warmuth, M.K.2
-
16
-
-
84869152925
-
Trading regret for efficiency: Online convex optimization with long term constraints
-
Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online convex optimization with long term constraints. Journal of Machine Learning Research, 13(1):2503-2528, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 2503-2528
-
-
Mahdavi, M.1
Jin, R.2
Yang, T.3
-
20
-
-
84937890749
-
Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs
-
Michael J. Neely. Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs. IEEE/ACM Transactions on Networking, 24(4):2223-2236, 2016.
-
(2016)
IEEE/ACM Transactions on Networking
, vol.24
, Issue.4
, pp. 2223-2236
-
-
Neely, M.J.1
-
22
-
-
77954471604
-
Cutting the electric bill for internet-scale systems
-
Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs. Cutting the electric bill for internet-scale systems. In ACM SIGCOMM, 2009.
-
(2009)
ACM SIGCOMM
-
-
Qureshi, A.1
Weber, R.2
Balakrishnan, H.3
Guttag, J.4
Maggs, B.5
-
24
-
-
84922954453
-
Random matrices: Universality of local spectral statistics of non-hermitian matrices
-
Terence Tao and Van Vu. Random matrices: universality of local spectral statistics of non-hermitian matrices. The Annals of Probability, 43(2):782-874, 2015.
-
(2015)
The Annals of Probability
, vol.43
, Issue.2
, pp. 782-874
-
-
Tao, T.1
Vu, V.2
-
26
-
-
0036099749
-
Concentration of non-lipschitz functions and applications
-
Van Vu. Concentration of non-lipschitz functions and applications. Random Structures & Algorithms, 20(3):262-316, 2002.
-
(2002)
Random Structures & Algorithms
, vol.20
, Issue.3
, pp. 262-316
-
-
Van Vu1
-
28
-
-
85021710810
-
A simple parallel algorithm with an O(1/t) convergence rate for general convex programs
-
Hao Yu and Michael J. Neely. A simple parallel algorithm with an O(1/t) convergence rate for general convex programs. SIAM Journal on Optimization, 27(2):759-783, 2017.
-
(2017)
SIAM Journal on Optimization
, vol.27
, Issue.2
, pp. 759-783
-
-
Yu, H.1
Neely, M.J.2
|