메뉴 건너뛰기




Volumn 9, Issue 5, 2018, Pages

Separating tree photosynthetic and non-photosynthetic components from point cloud data using Dynamic Segment Merging

Author keywords

Dynamic segmentation; Laser scanning; Pattern recognition; Point classification; Wood leaf classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORESTRY; LASER APPLICATIONS; PATTERN RECOGNITION; SCANNING; SUPERVISED LEARNING;

EID: 85046678466     PISSN: None     EISSN: 19994907     Source Type: Journal    
DOI: 10.3390/f9050252     Document Type: Article
Times cited : (38)

References (63)
  • 1
    • 84942023893 scopus 로고    scopus 로고
    • Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial lidar point cloud data of forest canopies
    • Ma, L.; Zheng, G.; Eitel, J.U.; Moskal, L.M.; He, W.; Huang, H. Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial lidar point cloud data of forest canopies. IEEE Trans. Geosci. Remote Sens. 2016, 54, 679-696
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 679-696
    • Ma, L.1    Zheng, G.2    Eitel, J.U.3    Moskal, L.M.4    He, W.5    Huang, H.6
  • 2
    • 84885446356 scopus 로고    scopus 로고
    • On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR
    • Béland, M.; Baldocchi, D.D.; Widlowski, J.L.; Fournier, R.A.; Verstraete, M.M. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agricult. For. Meteorol. 2014, 184, 82-97
    • (2014) Agricult. For. Meteorol , vol.184 , pp. 82-97
    • Béland, M.1    Baldocchi, D.D.2    Widlowski, J.L.3    Fournier, R.A.4    Verstraete, M.M.5
  • 3
    • 84971574730 scopus 로고    scopus 로고
    • Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest
    • Levick, S.R.; Hessenmöller, D.; Schulze, E.D. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest. Carbon Balance Manag. 2016, 11, 7
    • (2016) Carbon Balance Manag , vol.11 , pp. 7
    • Levick, S.R.1    Hessenmöller, D.2    Schulze, E.D.3
  • 4
    • 84872896116 scopus 로고    scopus 로고
    • Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning
    • Zheng, G.; Moskal, L.M.; Kim, S.H. Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 777-786
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 777-786
    • Zheng, G.1    Moskal, L.M.2    Kim, S.H.3
  • 6
    • 0027069057 scopus 로고
    • Defining leaf area index for non-flat leaves
    • Chen, J.M.; Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421-429
    • (1992) Plant Cell Environ , vol.15 , pp. 421-429
    • Chen, J.M.1    Black, T.2
  • 7
    • 0038356401 scopus 로고    scopus 로고
    • Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies
    • Asner, G.P.; Scurlock, J.M.; A Hicke, J. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 2003, 12, 191-205
    • (2003) Glob. Ecol. Biogeogr , vol.12 , pp. 191-205
    • Asner, G.P.1    Scurlock, J.M.2    Hicke, A.J.3
  • 8
    • 85046696930 scopus 로고    scopus 로고
    • Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model
    • Li, S.; Dai, L.;Wang, H.;Wang, Y.; He, Z.; Lin, S. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote Sens. 2017, 9, 1202
    • (2017) Remote Sens , vol.9 , pp. 1202
    • Li, S.1    Dai, L.2    Wang, H.3    Wang, Y.4    He, Z.5    Lin, S.6
  • 9
    • 85002740849 scopus 로고    scopus 로고
    • Automatic and self-adaptive stem reconstruction in landslide-affected forests
    • Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sens. 2016, 8, 974
    • (2016) Remote Sens , vol.8 , pp. 974
    • Wang, D.1    Hollaus, M.2    Puttonen, E.3    Pfeifer, N.4
  • 12
    • 40049089100 scopus 로고    scopus 로고
    • Automatic forest inventory parameter determination from terrestrial laser scanner data
    • Maas, H.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579-1593
    • (2008) Int. J. Remote Sens , vol.29 , pp. 1579-1593
    • Maas, H.1    Bienert, A.2    Scheller, S.3    Keane, E.4
  • 14
    • 85002710553 scopus 로고    scopus 로고
    • Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data
    • You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data. Remote Sens. 2016, 8, 717
    • (2016) Remote Sens , vol.8 , pp. 717
    • You, L.1    Tang, S.2    Song, X.3    Lei, Y.4    Zang, H.5    Lou, M.6    Zhuang, C.7
  • 15
    • 36749029953 scopus 로고    scopus 로고
    • Estimating basal area and stem volume for individual trees from lidar data
    • Chen, Q.; Gong, P.; Baldocchi, D.; Tian, Y.Q. Estimating basal area and stem volume for individual trees from lidar data. Photogramm. Eng. Remote Sens. 2007, 73, 1355-1365
    • (2007) Photogramm. Eng. Remote Sens , vol.73 , pp. 1355-1365
    • Chen, Q.1    Gong, P.2    Baldocchi, D.3    Tian, Y.Q.4
  • 16
    • 84919847857 scopus 로고    scopus 로고
    • Assessing mangrove above-ground biomass and structure using terrestrial laser scanning: A case study in the Everglades National Park
    • Feliciano, E.A.; Wdowinski, S.; Potts, M.D. Assessing mangrove above-ground biomass and structure using terrestrial laser scanning: A case study in the Everglades National Park. Wetlands 2014, 34, 955-968
    • (2014) Wetlands , vol.34 , pp. 955-968
    • Feliciano, E.A.1    Wdowinski, S.2    Potts, M.D.3
  • 17
    • 84942863513 scopus 로고    scopus 로고
    • A geometric method for wood-leaf separation using terrestrial and simulated lidar data
    • Tao, S.; Guo, Q.; Su, Y.; Xu, S.; Li, Y.;Wu, F. A geometric method for wood-leaf separation using terrestrial and simulated lidar data. Photogramm. Eng. Remote Sens. 2015, 81, 767-776
    • (2015) Photogramm. Eng. Remote Sens , vol.81 , pp. 767-776
    • Tao, S.1    Guo, Q.2    Su, Y.3    Xu, S.4    Li, Y.5    Wu, F.6
  • 18
    • 85019588827 scopus 로고    scopus 로고
    • A novel approach for retrieving tree leaf area from ground-based LiDAR
    • Yun, T.; An, F.; Li, W.; Sun, Y.; Cao, L.; Xue, L. A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sens. 2016, 8, 942
    • (2016) Remote Sens , vol.8 , pp. 942
    • Yun, T.1    An, F.2    Li, W.3    Sun, Y.4    Cao, L.5    Xue, L.6
  • 19
    • 77953769039 scopus 로고    scopus 로고
    • Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement
    • Pfennigbauer, M.; Ullrich, A. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement. SPIE Def. Secur. Sens. Int. Soc. Opt. Photonics 2010, 7684, 76841F
    • (2010) SPIE Def. Secur. Sens. Int. Soc. Opt. Photonics , vol.7684
    • Pfennigbauer, M.1    Ullrich, A.2
  • 22
    • 77955268048 scopus 로고    scopus 로고
    • Radiometric calibration of terrestrial laser scanners with external reference targets
    • Kaasalainen, S.; Krooks, A.; Kukko, A.; Kaartinen, H. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sens. 2009, 1, 144-158
    • (2009) Remote Sens , vol.1 , pp. 144-158
    • Kaasalainen, S.1    Krooks, A.2    Kukko, A.3    Kaartinen, H.4
  • 23
    • 85013319443 scopus 로고    scopus 로고
    • Evaluation of the Range Accuracy and the Radiometric Calibration of Multiple Terrestrial Laser Scanning Instruments for Data Interoperability
    • Calders, K.; Disney, M.I.; Armston, J.; Burt, A.; Brede, B.; Origo, N.; Muir, J.; Nightingale, J. Evaluation of the Range Accuracy and the Radiometric Calibration of Multiple Terrestrial Laser Scanning Instruments for Data Interoperability. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2716-2724
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 2716-2724
    • Calders, K.1    Disney, M.I.2    Armston, J.3    Burt, A.4    Brede, B.5    Origo, N.6    Muir, J.7    Nightingale, J.8
  • 24
    • 34548398576 scopus 로고    scopus 로고
    • Correction of laser scanning intensity data: Data and model-driven approaches
    • Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415-433
    • (2007) ISPRS J. Photogramm. Remote Sens , vol.62 , pp. 415-433
    • Höfle, B.1    Pfeifer, N.2
  • 25
    • 84856693563 scopus 로고    scopus 로고
    • Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods
    • Kaasalainen, S.; Jaakkola, A.; Kaasalainen, M.; Krooks, A.; Kukko, A. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sens. 2011, 3, 2207-2221
    • (2011) Remote Sens , vol.3 , pp. 2207-2221
    • Kaasalainen, S.1    Jaakkola, A.2    Kaasalainen, M.3    Krooks, A.4    Kukko, A.5
  • 27
    • 84859409570 scopus 로고    scopus 로고
    • Full waveform hyperspectral LiDAR for terrestrial laser scanning
    • Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 2012, 20, 7119-7127
    • (2012) Opt. Express , vol.20 , pp. 7119-7127
    • Hakala, T.1    Suomalainen, J.2    Kaasalainen, S.3    Chen, Y.4
  • 29
    • 85046681848 scopus 로고    scopus 로고
    • Processing tree point clouds using Gaussian mixture models
    • Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 11-13 November
    • Belton, D.; Moncrieff, S.; Chapman, J. Processing tree point clouds using Gaussian mixture models. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 11-13 November 2013; pp. 11-13
    • (2013) Proceedings of the ISPRS Annals of the Photogrammetry , pp. 11-13
    • Belton, D.1    Moncrieff, S.2    Chapman, J.3
  • 30
    • 85031004725 scopus 로고    scopus 로고
    • Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data
    • Wang, D.; Hollaus, M.; Pfeifer, N. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W4, 157-164
    • (2017) ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci , vol.IV-2/W4 , pp. 157-164
    • Wang, D.1    Hollaus, M.2    Pfeifer, N.3
  • 31
    • 84974785092 scopus 로고    scopus 로고
    • An easy-to-use airborne LiDAR data filtering method based on cloth simulation
    • Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501
    • (2016) Remote Sens , vol.8 , pp. 501
    • Zhang, W.1    Qi, J.2    Wan, P.3    Wang, H.4    Xie, D.5    Wang, X.6    Yan, G.7
  • 32
    • 84930622785 scopus 로고    scopus 로고
    • Non destructive method for biomass prediction combining TLS derived tree volume and wood density
    • Hackenberg, J.; Wassenberg, M.; Spiecker, H.; Sun, D. Non destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests 2015, 6, 1274-1300
    • (2015) Forests , vol.6 , pp. 1274-1300
    • Hackenberg, J.1    Wassenberg, M.2    Spiecker, H.3    Sun, D.4
  • 35
    • 84887479305 scopus 로고    scopus 로고
    • Remote sensing image segmentation based on dynamic statistical region merging
    • Huang, Z.; Zhang, J.; Li, X.; Zhang, H. Remote sensing image segmentation based on dynamic statistical region merging. Optik Int. J. Light Electron Opt. 2014, 125, 870-875
    • (2014) Optik Int. J. Light Electron Opt , vol.125 , pp. 870-875
    • Huang, Z.1    Zhang, J.2    Li, X.3    Zhang, H.4
  • 36
    • 85046267890 scopus 로고    scopus 로고
    • Large-scale point cloud semantic segmentation with superpoint graphs
    • Landrieu, L.; Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs. arXiv 2017, arXiv:1711.09869
    • (2017)
    • Landrieu, L.1    Simonovsky, M.2
  • 37
    • 82055163012 scopus 로고    scopus 로고
    • Automatic image segmentation by dynamic region merging
    • Peng, B.; Zhang, L.; Zhang, D. Automatic image segmentation by dynamic region merging. IEEE Trans. Image Process. 2011, 20, 3592-3605
    • (2011) IEEE Trans. Image Process , vol.20 , pp. 3592-3605
    • Peng, B.1    Zhang, L.2    Zhang, D.3
  • 39
    • 84888299794 scopus 로고    scopus 로고
    • Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection
    • Höfle, B. Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 94-98
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 94-98
    • Höfle, B.1
  • 40
    • 84924263010 scopus 로고    scopus 로고
    • An adaptive approach for segmentation of 3D laser point cloud
    • Lari, Z.; Habib, A.; Kwak, E. An adaptive approach for segmentation of 3D laser point cloud. ISPRSWorkshop Laser Scanning 2011, XXXVIII-5/W12, 29-31
    • (2011) ISPRSWorkshop Laser Scanning , vol.XXXVIII-5/W12 , pp. 29-31
    • Lari, Z.1    Habib, A.2    Kwak, E.3
  • 43
    • 0003750496 scopus 로고    scopus 로고
    • Technical Report; School of Computer Science, Carnegie Mellon University: Pittsburgh, PA, USA
    • Garland, M. Quadric-Based Polygonal Surface Simplification; Technical Report; School of Computer Science, Carnegie Mellon University: Pittsburgh, PA, USA, 1999
    • (1999) Quadric-Based Polygonal Surface Simplification
    • Garland, M.1
  • 45
    • 84973251040 scopus 로고    scopus 로고
    • Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features
    • Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 181
    • (2014) ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci , vol.2 , pp. 181
    • Weinmann, M.1    Jutzi, B.2    Mallet, C.3
  • 46
    • 85040980387 scopus 로고    scopus 로고
    • Automatic stem detection in terrestrial laser scanning data with distance-adaptive search radius
    • Chen, M.; Wan, Y.; Wang, M.; Xu, J. Automatic stem detection in terrestrial laser scanning data with distance-adaptive search radius. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2968-2979
    • (2018) IEEE Trans. Geosci. Remote Sens , vol.56 , pp. 2968-2979
    • Chen, M.1    Wan, Y.2    Wang, M.3    Xu, J.4
  • 47
    • 84949525680 scopus 로고    scopus 로고
    • Detecting stems in dense and homogeneous forest using single-scan TLS
    • Xia, S.;Wang, C.; Pan, F.; Xi, X.; Zeng, H.; Liu, H. Detecting stems in dense and homogeneous forest using single-scan TLS. Forests 2015, 6, 3923-3945
    • (2015) Forests , vol.6 , pp. 3923-3945
    • Xia, S.1    Wang, C.2    Pan, F.3    Xi, X.4    Zeng, H.5    Liu, H.6
  • 48
    • 84857315359 scopus 로고    scopus 로고
    • 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology
    • Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121-134
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.68 , pp. 121-134
    • Brodu, N.1    Lague, D.2
  • 54
    • 27444443641 scopus 로고    scopus 로고
    • Neighborhood systems for airborne laser data
    • Filin, S.; Pfeifer, N. Neighborhood systems for airborne laser data. Photogramm. Eng. Remote Sens. 2005, 71, 743-755
    • (2005) Photogramm. Eng. Remote Sens , vol.71 , pp. 743-755
    • Filin, S.1    Pfeifer, N.2
  • 55
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 59
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Machine learning 2001, 45, 5-32
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 60
    • 84938196422 scopus 로고    scopus 로고
    • Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas
    • Weinmann, M.; Urban, S.; Hinz, S.; Jutzi, B.; Mallet, C. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas. Comput. Graph. 2015, 49, 47-57
    • (2015) Comput. Graph , vol.49 , pp. 47-57
    • Weinmann, M.1    Urban, S.2    Hinz, S.3    Jutzi, B.4    Mallet, C.5
  • 61
    • 85046645498 scopus 로고    scopus 로고
    • Pointnet: Deep learning on point sets for 3d classification and segmentation
    • Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. Comput. Vis. Pattern Recognit. 2017, 1, 4
    • (2017) Comput. Vis. Pattern Recognit , vol.1 , pp. 4
    • Qi, C.R.1    Su, H.2    Mo, K.3    Guibas, L.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.