메뉴 건너뛰기




Volumn 7, Issue 4, 2018, Pages

Multi-temporal land cover classification with sequential recurrent encoders

Author keywords

Crop classification; Deep learning; Land cover classification; Land use; Multi temporal classification; Recurrent networks; Sentinel 2; Sequence encoder; Sequence to sequence

Indexed keywords


EID: 85046448909     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi7040129     Document Type: Article
Times cited : (274)

References (47)
  • 1
    • 85042539031 scopus 로고    scopus 로고
    • Simultaneous spectral-spatial feature selection and extraction for hyperspectral images
    • Zhang, L.; Zhang, Q.; Du, B.; Huang, X.; Tang, Y.Y.; Tao, D. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images. IEEE Trans. Cybern. 2018, 48, 16–28.
    • (2018) IEEE Trans. Cybern. , vol.48 , pp. 16-28
    • Zhang, L.1    Zhang, Q.2    Du, B.3    Huang, X.4    Tang, Y.Y.5    Tao, D.6
  • 2
    • 0019895242 scopus 로고
    • Crop identification using Landsat temporal-spectral profiles
    • Odenweller, J.B.; Johnson, K.I. Crop identification using Landsat temporal-spectral profiles. Remote Sens. Environ. 1984, 14, 39–54.
    • (1984) Remote Sens. Environ. , vol.14 , pp. 39-54
    • Odenweller, J.B.1    Johnson, K.I.2
  • 10
    • 84865820031 scopus 로고    scopus 로고
    • Crop type mapping using spectral-temporal profiles and phenological information
    • Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral-temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40.
    • (2012) Comput. Electron. Agric. , vol.89 , pp. 30-40
    • Foerster, S.1    Kaden, K.2    Foerster, M.3    Itzerott, S.4
  • 11
    • 84860390491 scopus 로고    scopus 로고
    • Per-field irrigated crop classification in arid central Asia using spot and aster data
    • Conrad, C.; Fritsch, S.; Zeidler, J.; R cker, G.; Dech, S. Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sens. 2010, 2, 1035–1056.
    • (2010) Remote Sens , vol.2 , pp. 1035-1056
    • Conrad, C.1    Fritsch, S.2    Zeidler, J.3    R cker, G.4    Dech, S.5
  • 12
    • 84896005616 scopus 로고    scopus 로고
    • Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images
    • Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; L w, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74.
    • (2014) Comput. Electron. Agric. , vol.103 , pp. 63-74
    • Conrad, C.1    Dech, S.2    Dubovyk, O.3    Fritsch, S.4    Klein, D.5    L W, F.6    Schorcht, G.7    Zeidler, J.8
  • 13
    • 84930024323 scopus 로고    scopus 로고
    • Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA
    • Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369.
    • (2015) Remote Sens , vol.7 , pp. 5347-5369
    • Hao, P.1    Zhan, Y.2    Wang, L.3    Niu, Z.4    Shakir, M.5
  • 14
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 15
    • 84937897682 scopus 로고    scopus 로고
    • A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data
    • Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650.
    • (2015) Remote Sens , vol.7 , pp. 3633-3650
    • Siachalou, S.1    Mallinis, G.2    Tsakiri-Strati, M.3
  • 16
    • 84906326713 scopus 로고    scopus 로고
    • Conditional random fields for multitemporal and multiscale classification of optical satellite imagery
    • Hoberg, T.; Rottensteiner, F.; Feitosa, R.Q.; Heipke, C. Conditional random fields for multitemporal and multiscale classification of optical satellite imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 659–673.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 659-673
    • Hoberg, T.1    Rottensteiner, F.2    Feitosa, R.Q.3    Heipke, C.4
  • 17
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 19
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707.
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 20
    • 85013301566 scopus 로고    scopus 로고
    • Training deep convolutional neural networks for land-cover classification of high-resolution imagery
    • Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 549–553.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , pp. 549-553
    • Scott, G.J.1    England, M.R.2    Starms, W.A.3    Marcum, R.A.4    Davis, C.H.5
  • 23
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sens. 2016, 8, 506.
    • (2016) Remote Sens , vol.8 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 30
    • 0029255891 scopus 로고
    • On the computational power of neural nets
    • Siegelmann, H.; Sontag, E. On the Computational Power of Neural Nets. J. Comput. Syst. Sci. 1995, 50, 132–150.
    • (1995) J. Comput. Syst. Sci. , vol.50 , pp. 132-150
    • Siegelmann, H.1    Sontag, E.2
  • 32
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • IEEE Press: New York, NY, USA
    • Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In A Field Guide to Dynamical Recurrent Networks; IEEE Press: New York, NY, USA, 2001; pp. 237–243.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 237-243
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 33
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Yoshua, B.; Patrice, S.; Paolo, F. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 157-166
    • Yoshua, B.1    Patrice, S.2    Paolo, F.3
  • 36
  • 37
    • 0034702306 scopus 로고    scopus 로고
    • Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
    • Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951.
    • (2000) Nature , vol.405 , pp. 947-951
    • Hahnloser, R.1    Sarpeshkar, R.2    Mahowald, M.A.3    Douglas, R.J.4    Seung, H.S.5
  • 38
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proc. Int. Conf. Mach. Learn. 2013, 28, 6.
    • (2013) Proc. Int. Conf. Mach. Learn. , vol.28 , pp. 6
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 40
    • 84973587732 scopus 로고
    • A coefficient of agreeement for nominal scales
    • Cohen, J. A coefficient of agreeement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 42
    • 0024163876 scopus 로고
    • The determination of optimal threshold levels for change detection using various accuracy indices
    • Fung, T.; Ledrew, E. The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454.
    • (1988) Photogramm. Eng. Remote Sens. , vol.54 , pp. 1449-1454
    • Fung, T.1    Ledrew, E.2
  • 43
    • 84867276477 scopus 로고    scopus 로고
    • Interrater reliability: The kappa statistic
    • McHugh, M.L. Interrater reliability: the kappa statistic. Biochem. Med. 2012, 22, 276–282.
    • (2012) Biochem. Med. , vol.22 , pp. 276-282
    • McHugh, M.L.1
  • 45
    • 0029667637 scopus 로고    scopus 로고
    • A spatially adaptive fast atmospheric correction algorithm
    • Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 1996, 17, 1201–1214.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1201-1214
    • Richter, R.1
  • 47
    • 77955321544 scopus 로고    scopus 로고
    • A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images
    • Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1747-1755
    • Hagolle, O.1    Huc, M.2    Villa Pascual, D.3    Dedieu, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.