-
1
-
-
85042539031
-
Simultaneous spectral-spatial feature selection and extraction for hyperspectral images
-
Zhang, L.; Zhang, Q.; Du, B.; Huang, X.; Tang, Y.Y.; Tao, D. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images. IEEE Trans. Cybern. 2018, 48, 16–28.
-
(2018)
IEEE Trans. Cybern.
, vol.48
, pp. 16-28
-
-
Zhang, L.1
Zhang, Q.2
Du, B.3
Huang, X.4
Tang, Y.Y.5
Tao, D.6
-
2
-
-
0019895242
-
Crop identification using Landsat temporal-spectral profiles
-
Odenweller, J.B.; Johnson, K.I. Crop identification using Landsat temporal-spectral profiles. Remote Sens. Environ. 1984, 14, 39–54.
-
(1984)
Remote Sens. Environ.
, vol.14
, pp. 39-54
-
-
Odenweller, J.B.1
Johnson, K.I.2
-
3
-
-
0028591653
-
Measuring phenological variability from satellite imagery
-
Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring Phenological Variability from Satellite Imagery. J. Veg. Sci. 1994, 5, 703–714.
-
(1994)
J. Veg. Sci.
, vol.5
, pp. 703-714
-
-
Reed, B.C.1
Brown, J.F.2
VanderZee, D.3
Loveland, T.R.4
Merchant, J.W.5
Ohlen, D.O.6
-
7
-
-
85015998681
-
-
arXiv
-
Nallapati, R.; Zhou, B.; dos Santos, C.N.; Gulcehre, C.; Xiang, B. Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond. arXiv 2016, arXiv:1602.06023v5.
-
(2016)
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond
-
-
Nallapati, R.1
Zhou, B.2
Dos Santos, C.N.3
Gulcehre, C.4
Xiang, B.5
-
9
-
-
84965139600
-
Attention-based models for speech recognition
-
Chorowski, J.; Bahdanau, D.; Serdyuk, D.; Cho, K.; Bengio, Y. Attention-based models for speech recognition. Adv. Neural Inf. Process. Syst. 2015, 1, 557–585.
-
(2015)
Adv. Neural Inf. Process. Syst.
, vol.1
, pp. 557-585
-
-
Chorowski, J.1
Bahdanau, D.2
Serdyuk, D.3
Cho, K.4
Bengio, Y.5
-
10
-
-
84865820031
-
Crop type mapping using spectral-temporal profiles and phenological information
-
Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral-temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40.
-
(2012)
Comput. Electron. Agric.
, vol.89
, pp. 30-40
-
-
Foerster, S.1
Kaden, K.2
Foerster, M.3
Itzerott, S.4
-
11
-
-
84860390491
-
Per-field irrigated crop classification in arid central Asia using spot and aster data
-
Conrad, C.; Fritsch, S.; Zeidler, J.; R cker, G.; Dech, S. Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sens. 2010, 2, 1035–1056.
-
(2010)
Remote Sens
, vol.2
, pp. 1035-1056
-
-
Conrad, C.1
Fritsch, S.2
Zeidler, J.3
R cker, G.4
Dech, S.5
-
12
-
-
84896005616
-
Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images
-
Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; L w, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74.
-
(2014)
Comput. Electron. Agric.
, vol.103
, pp. 63-74
-
-
Conrad, C.1
Dech, S.2
Dubovyk, O.3
Fritsch, S.4
Klein, D.5
L W, F.6
Schorcht, G.7
Zeidler, J.8
-
13
-
-
84930024323
-
Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA
-
Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369.
-
(2015)
Remote Sens
, vol.7
, pp. 5347-5369
-
-
Hao, P.1
Zhan, Y.2
Wang, L.3
Niu, Z.4
Shakir, M.5
-
14
-
-
79953182966
-
Object-based crop identification using multiple vegetation indices, textural features and crop phenology
-
Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316.
-
(2011)
Remote Sens. Environ.
, vol.115
, pp. 1301-1316
-
-
Peña-Barragán, J.M.1
Ngugi, M.K.2
Plant, R.E.3
Six, J.4
-
15
-
-
84937897682
-
A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data
-
Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650.
-
(2015)
Remote Sens
, vol.7
, pp. 3633-3650
-
-
Siachalou, S.1
Mallinis, G.2
Tsakiri-Strati, M.3
-
16
-
-
84906326713
-
Conditional random fields for multitemporal and multiscale classification of optical satellite imagery
-
Hoberg, T.; Rottensteiner, F.; Feitosa, R.Q.; Heipke, C. Conditional random fields for multitemporal and multiscale classification of optical satellite imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 659–673.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, pp. 659-673
-
-
Hoberg, T.1
Rottensteiner, F.2
Feitosa, R.Q.3
Heipke, C.4
-
17
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40.
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
18
-
-
85040367775
-
Deep learning in remote sensing: A comprehensive review and list of resources
-
Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36.
-
(2017)
IEEE Geosci. Remote Sens. Mag.
, vol.5
, pp. 8-36
-
-
Zhu, X.X.1
Tuia, D.2
Mou, L.3
Xia, G.S.4
Zhang, L.5
Xu, F.6
Fraundorfer, F.7
-
19
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707.
-
(2015)
Remote Sens
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.S.2
Hu, J.3
Zhang, L.4
-
20
-
-
85013301566
-
Training deep convolutional neural networks for land-cover classification of high-resolution imagery
-
Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 549–553.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, pp. 549-553
-
-
Scott, G.J.1
England, M.R.2
Starms, W.A.3
Marcum, R.A.4
Davis, C.H.5
-
21
-
-
84962569483
-
Deep supervised learning for hyperspectral data classification through convolutional neural networks
-
Milan, Italy, 26–31 July
-
Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (GARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.
-
(2015)
Proceedings of The 2015 IEEE International Geoscience and Remote Sensing Symposium (GARSS)
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
23
-
-
84974817496
-
Learning a transferable change rule from a recurrent neural network for land cover change detection
-
Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sens. 2016, 8, 506.
-
(2016)
Remote Sens
, vol.8
, pp. 506
-
-
Lyu, H.1
Lu, H.2
Mou, L.3
-
24
-
-
85029035936
-
Incremental dual-memory lstm in land cover prediction
-
Halifax, NS, Canada, 13–17 August
-
Jia, X.; Khandelwal, A.; Nayak, G.; Gerber, J.; Carlson, K.; West, P.; Kumar, V. Incremental Dual-memory LSTM in Land Cover Prediction. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 867–876.
-
(2017)
Proceedings of The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 867-876
-
-
Jia, X.1
Khandelwal, A.2
Nayak, G.3
Gerber, J.4
Carlson, K.5
West, P.6
Kumar, V.7
-
26
-
-
85046468645
-
-
arXiv
-
Braakmann-Folgmann, A.; Roscher, R.; Wenzel, S.; Uebbing, B.; Kusche, J. Sea Level Anomaly Prediction using Recurrent Neural Networks. arXiv 2017, arXiv:1710.07099v1.
-
(2017)
Sea Level Anomaly Prediction Using Recurrent Neural Networks
-
-
Braakmann-Folgmann, A.1
Roscher, R.2
Wenzel, S.3
Uebbing, B.4
Kusche, J.5
-
28
-
-
85046454407
-
Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images
-
Honolulu, HI, USA, 21–26 July
-
Rußwurm, M.; K rner, M. Temporal Vegetation Modelling using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-Spectral Satellite Images. In Proceedings of the IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EarthVision), Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017.
-
(2017)
Proceedings of The IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EarthVision), Computer Vision and Pattern Recognition Workshops (CVPRW)
-
-
Rußwurm, M.1
K rner, M.2
-
30
-
-
0029255891
-
On the computational power of neural nets
-
Siegelmann, H.; Sontag, E. On the Computational Power of Neural Nets. J. Comput. Syst. Sci. 1995, 50, 132–150.
-
(1995)
J. Comput. Syst. Sci.
, vol.50
, pp. 132-150
-
-
Siegelmann, H.1
Sontag, E.2
-
31
-
-
85010821099
-
An empirical exploration of recurrent network architectures
-
Lille, France, 6–11 July
-
Rafal, J.; Wojciech, Z.; Ilya, S. An Empirical Exploration of Recurrent Network Architectures. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 7, pp. 2342–2350.
-
(2015)
Proceedings of The 32nd International Conference on International Conference on Machine Learning
, vol.7
, pp. 2342-2350
-
-
Rafal, J.1
Wojciech, Z.2
Ilya, S.3
-
32
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
IEEE Press: New York, NY, USA
-
Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In A Field Guide to Dynamical Recurrent Networks; IEEE Press: New York, NY, USA, 2001; pp. 237–243.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 237-243
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
33
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Yoshua, B.; Patrice, S.; Paolo, F. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 157-166
-
-
Yoshua, B.1
Patrice, S.2
Paolo, F.3
-
35
-
-
84961291190
-
-
arXiv
-
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078v3.
-
(2014)
Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
-
-
Cho, K.1
Van Merrienboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
36
-
-
84965121965
-
Convolutional LSTM network: A machine learning approach for precipitation nowcasting
-
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 1, 802–810.
-
(2015)
Adv. Neural Inf. Process. Syst.
, vol.1
, pp. 802-810
-
-
Shi, X.1
Chen, Z.2
Wang, H.3
Yeung, D.Y.4
Wong, W.K.5
Woo, W.C.6
-
37
-
-
0034702306
-
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
-
Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951.
-
(2000)
Nature
, vol.405
, pp. 947-951
-
-
Hahnloser, R.1
Sarpeshkar, R.2
Mahowald, M.A.3
Douglas, R.J.4
Seung, H.S.5
-
38
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proc. Int. Conf. Mach. Learn. 2013, 28, 6.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, vol.28
, pp. 6
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
40
-
-
84973587732
-
A coefficient of agreeement for nominal scales
-
Cohen, J. A coefficient of agreeement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46.
-
(1960)
Educ. Psychol. Meas.
, vol.20
, pp. 37-46
-
-
Cohen, J.1
-
42
-
-
0024163876
-
The determination of optimal threshold levels for change detection using various accuracy indices
-
Fung, T.; Ledrew, E. The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454.
-
(1988)
Photogramm. Eng. Remote Sens.
, vol.54
, pp. 1449-1454
-
-
Fung, T.1
Ledrew, E.2
-
43
-
-
84867276477
-
Interrater reliability: The kappa statistic
-
McHugh, M.L. Interrater reliability: the kappa statistic. Biochem. Med. 2012, 22, 276–282.
-
(2012)
Biochem. Med.
, vol.22
, pp. 276-282
-
-
McHugh, M.L.1
-
45
-
-
0029667637
-
A spatially adaptive fast atmospheric correction algorithm
-
Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 1996, 17, 1201–1214.
-
(1996)
Int. J. Remote Sens.
, vol.17
, pp. 1201-1214
-
-
Richter, R.1
-
46
-
-
0033700418
-
Status of Atmospheric Correction using a MODTRAN4-Based Algorithm
-
Orlando, FL, USA, 16–20 April
-
Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.P. Status of Atmospheric Correction using a MODTRAN4-Based Algorithm. In Proceedings of the SPIE Algorithms for Multispectral, Hyperspectral, and Ultra-Spectral Imagery VI, Orlando, FL, USA, 16–20 April 2000; pp. 199–207.
-
(2000)
Proceedings of the spie algorithms for multispectral, hyperspectral, and ultra-spectral imagery VI
, pp. 199-207
-
-
Matthew, M.W.1
Adler-Golden, S.M.2
Berk, A.3
Richtsmeier, S.C.4
Levine, R.Y.5
Bernstein, L.S.6
Acharya, P.K.7
Anderson, G.P.8
Felde, G.W.9
Hoke, M.P.10
-
47
-
-
77955321544
-
A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images
-
Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755.
-
(2010)
Remote Sens. Environ.
, vol.114
, pp. 1747-1755
-
-
Hagolle, O.1
Huc, M.2
Villa Pascual, D.3
Dedieu, G.4
|