메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1601-1608

Robust Motion Estimation Using Trajectory Spectrum Learning: Application to Aortic and Mitral Valve Modeling from 4D TEE

Author keywords

[No Author keywords available]

Indexed keywords

BLOOD VESSELS; DISCRETE FOURIER TRANSFORMS; MEDICAL IMAGING; TRAJECTORIES; ULTRASONIC APPLICATIONS;

EID: 85046280642     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459363     Document Type: Conference Paper
Times cited : (10)

References (32)
  • 1
    • 35048818184 scopus 로고    scopus 로고
    • Tracking articulated motion using a mixture of autoregressive models
    • A. Agarwal and B. Triggs. Tracking articulated motion using a mixture of autoregressive models. In ECCV, pages III 54-65, 2004.
    • (2004) ECCV , pp. 54-65
    • Agarwal, A.1    Triggs, B.2
  • 2
    • 84858785940 scopus 로고    scopus 로고
    • Nonrigid structure from motion in trajectory space
    • I. Akhter, Y. Sheikh, S. Khan, and T. Kanade. Nonrigid structure from motion in trajectory space. In NIPS, 2008.
    • (2008) NIPS
    • Akhter, I.1    Sheikh, Y.2    Khan, S.3    Kanade, T.4
  • 3
    • 0033690445 scopus 로고    scopus 로고
    • Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence
    • April
    • S. Avidan and A. Shashua. Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence. PAMI, 22(4):348-357, April 2000.
    • (2000) PAMI , vol.22 , Issue.4 , pp. 348-357
    • Avidan, S.1    Shashua, A.2
  • 4
    • 34249671311 scopus 로고    scopus 로고
    • Extraction and analysis of multiple periodic motions in video sequences
    • July
    • A. Briassouli and N. Ahuja. Extraction and analysis of multiple periodic motions in video sequences. PAMI, 29(7):1244-1261, July 2007.
    • (2007) PAMI , vol.29 , Issue.7 , pp. 1244-1261
    • Briassouli, A.1    Ahuja, N.2
  • 5
    • 0033682434 scopus 로고    scopus 로고
    • Real-time tracking of non-rigid objects using mean shift
    • D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In CVPR, pages II: 142-149, 2000.
    • (2000) CVPR , pp. 142-149
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 7
    • 36348943991 scopus 로고    scopus 로고
    • Validation of optical-flow for quantification of myocardial deformations on simulated RT3D ultrasound
    • Q. Duan, E. Angelini, S. Homma, and A. Laine. Validation of optical-flow for quantification of myocardial deformations on simulated RT3D ultrasound. In ISBI, 2007.
    • (2007) ISBI
    • Duan, Q.1    Angelini, E.2    Homma, S.3    Laine, A.4
  • 8
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • June
    • M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM, 24(6):381-395, June 1981.
    • (1981) Comm. of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 9
    • 34948853251 scopus 로고    scopus 로고
    • Bridging the gap between detection and tracking for 3D monocular video-based motion capture
    • A. Fossati, M. Dimitrijevic, V. Lepetit, and P. Fua. Bridging the gap between detection and tracking for 3D monocular video-based motion capture. In CVPR, 2007.
    • (2007) CVPR
    • Fossati, A.1    Dimitrijevic, M.2    Lepetit, V.3    Fua, P.4
  • 11
    • 0032136153 scopus 로고    scopus 로고
    • C-conditional density propagation for visual tracking
    • August
    • M. Isard and A. Blake. C-conditional density propagation for visual tracking. IJCV, 29(1):5-28, August 1998.
    • (1998) IJCV , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 12
    • 33745943239 scopus 로고    scopus 로고
    • Efficient visual event detection using volumetric features
    • Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using volumetric features. In ICCV, pages I: 166-173, 2005.
    • (2005) ICCV , pp. 166-173
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 13
    • 5044229258 scopus 로고    scopus 로고
    • Hierarchical shape modeling for automatic face localization
    • C. Liu, H. Shum, and C. Zhang. Hierarchical shape modeling for automatic face localization. In ECCV, 2002.
    • (2002) ECCV
    • Liu, C.1    Shum, H.2    Zhang, C.3
  • 14
    • 0032310759 scopus 로고    scopus 로고
    • Finding periodicity in space and time
    • F. Liu and R. Picard. Finding periodicity in space and time. In ICCV, pages 376-383, 1998.
    • (1998) ICCV , pp. 376-383
    • Liu, F.1    Picard, R.2
  • 16
    • 33749376149 scopus 로고    scopus 로고
    • Motion trajectory learning in the DFT-coefficient feature space
    • A. Naftel and S. Khalid. Motion trajectory learning in the DFT-coefficient feature space. In Intl. Conf. on Computer Vision Systems, page 47, 2006.
    • (2006) Intl. Conf. on Computer Vision Systems , pp. 47
    • Naftel, A.1    Khalid, S.2
  • 17
    • 24644492941 scopus 로고    scopus 로고
    • Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models
    • N. Nguyen, D. Phung, S. Venkatesh, and H. Bui. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In CVPR, pages II: 955-960, 2005.
    • (2005) CVPR , pp. 955-960
    • Nguyen, N.1    Phung, D.2    Venkatesh, S.3    Bui, H.4
  • 18
    • 84899010293 scopus 로고    scopus 로고
    • Learning and tracking cyclic human motion
    • D. Ormoneit, H. Sidenbladh, M. Black, and T. Hastie. Learning and tracking cyclic human motion. In NIPS, pages 894-900, 2001.
    • (2001) NIPS , pp. 894-900
    • Ormoneit, D.1    Sidenbladh, H.2    Black, M.3    Hastie, T.4
  • 19
    • 0031152984 scopus 로고    scopus 로고
    • Detection and recognition of periodic, nonrigid motion
    • R. Polana and R. Nelson. Detection and recognition of periodic, nonrigid motion. IJCV, 23(3):261-282, 1997.
    • (1997) IJCV , vol.23 , Issue.3 , pp. 261-282
    • Polana, R.1    Nelson, R.2
  • 20
    • 56749161374 scopus 로고    scopus 로고
    • Estimating 3D trajectories of periodic motions from stationary monocular views
    • E. Ribnick and N. Papanikolopoulos. Estimating 3D trajectories of periodic motions from stationary monocular views. In ECCV, pages III: 546-559, 2008.
    • (2008) ECCV , vol.3 , pp. 546-559
    • Ribnick, E.1    Papanikolopoulos, N.2
  • 21
    • 24644445659 scopus 로고    scopus 로고
    • Discriminative density propagation for 3D human motion estimation
    • C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative density propagation for 3D human motion estimation. In CVPR, pages I: 390-397, 2005.
    • (2005) CVPR , pp. 390-397
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Metaxas, D.4
  • 22
    • 0344983340 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • D. Snow, M. Jones, and P. Viola. Detecting pedestrians using patterns of motion and appearance. In ICCV, pages 734-741, 2003.
    • (2003) ICCV , pp. 734-741
    • Snow, D.1    Jones, M.2    Viola, P.3
  • 23
    • 33845583552 scopus 로고    scopus 로고
    • Conditional random people: Tracking humans with CRFs and grid filters
    • L. Taycher, D. Demirdjian, T. Darrell, and G. Shakhnarovich. Conditional random people: Tracking humans with CRFs and grid filters. In CVPR, pages I: 222-229, 2006.
    • (2006) CVPR , pp. 222-229
    • Taycher, L.1    Demirdjian, D.2    Darrell, T.3    Shakhnarovich, G.4
  • 25
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Z. Tu. Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In ICCV, pages II: 1589-1596, 2005.
    • (2005) ICCV , pp. 1589-1596
    • Tu, Z.1
  • 26
    • 33845572535 scopus 로고    scopus 로고
    • Probabilistic 3D polyp detection in CT images: The role of sample alignment
    • Z. Tu, X. Zhou, L. Bogoni, A. Barbu, and D. Comaniciu. Probabilistic 3D polyp detection in CT images: The role of sample alignment. In CVPR, pages II: 1544-1551, 2006.
    • (2006) CVPR , pp. 1544-1551
    • Tu, Z.1    Zhou, X.2    Bogoni, L.3    Barbu, A.4    Comaniciu, D.5
  • 27
    • 51949096907 scopus 로고    scopus 로고
    • Moving shape dynamics: A signal processing perspective
    • L. Wang, X. Geng, C. Leckie, and R. Kotagiri. Moving shape dynamics: A signal processing perspective. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Wang, L.1    Geng, X.2    Leckie, C.3    Kotagiri, R.4
  • 28
    • 0344983290 scopus 로고    scopus 로고
    • Tracking articulated body by dynamic Markov network
    • Y. Wu, G. Hua, and T. Yu. Tracking articulated body by dynamic Markov network. In ICCV'03, pages 1094-1101, 2003.
    • (2003) ICCV'03 , pp. 1094-1101
    • Wu, Y.1    Hua, G.2    Yu, T.3
  • 29
    • 51949102997 scopus 로고    scopus 로고
    • 3d ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers
    • L. Yang, B. Georgescu, Y. Zheng, P. Meer, and D. Comaniciu. 3d ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In CVPR, 2008.
    • (2008) CVPR
    • Yang, L.1    Georgescu, B.2    Zheng, Y.3    Meer, P.4    Comaniciu, D.5
  • 30
    • 85127296863 scopus 로고    scopus 로고
    • Temporal factorization vs. spatial factorization
    • L. Zelnik Manor and M. Irani. Temporal factorization vs. spatial factorization. In ECCV'04, pages Vol II: 434-445, 2004.
    • (2004) ECCV'04 , vol.2 , pp. 434-445
    • Manor, L.Z.1    Irani, M.2
  • 31
    • 4344605800 scopus 로고    scopus 로고
    • 3D tracking of human locomotion: a tracking as recognition approach
    • T. Zhao and R. Nevatia. 3D tracking of human locomotion: a tracking as recognition approach. In ICPR, pages I: 546-551, 2002.
    • (2002) ICPR , pp. 546-551
    • Zhao, T.1    Nevatia, R.2
  • 32
    • 50649107002 scopus 로고    scopus 로고
    • Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features
    • Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In ICCV, 2007.
    • (2007) ICCV
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.