메뉴 건너뛰기




Volumn 15, Issue 4, 2018, Pages

Rochester Epidemiology Project data exploration portal

Author keywords

[No Author keywords available]

Indexed keywords

ADOLESCENT; ADULT; AGED; CHILD; ELECTRONIC HEALTH RECORD; ELECTRONIC MEDICAL RECORD SYSTEM; FEMALE; HISTORY; HUMAN; INFANT; INTERNATIONAL CLASSIFICATION OF DISEASES; INTERNET; MALE; MEDICAL RECORD; MIDDLE AGED; MINNESOTA; ORGANIZATION AND MANAGEMENT; PRESCHOOL CHILD; PROCEDURES; STATISTICS AND NUMERICAL DATA; VERY ELDERLY; WISCONSIN; YOUNG ADULT;

EID: 85046088311     PISSN: 15451151     EISSN: 21665435     Source Type: Journal    
DOI: 10.5888/pcd15.170242     Document Type: Article
Times cited : (23)

References (33)
  • 1
    • 84969286938 scopus 로고    scopus 로고
    • National Center for Health Statistics. Accessed August 30, 2017
    • FastStats: statistics by topic. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Health Statistics; 2016. https://www.cdc.gov/nchs/fastats. Accessed August 30, 2017
    • (2016) Atlanta (GA): Centers for Disease Control and Prevention
  • 5
    • 85046104436 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • America's Health Rankings. Minneapolis (MN): United Health Group; 2017. https://www.americashealthrankings.org. Accessed August 30, 2017
    • (2017) Minneapolis (MN): United Health Group
  • 10
    • 85046109391 scopus 로고    scopus 로고
    • The Dartmouth atlas of health care 1998. Accessed March 15
    • Dartmouth Medical School. Center for the Evaluative Clinical Sciences. The Dartmouth atlas of health care 1998: http://www.dartmouthatlas.org/downloads/atlases/98atlas.pdf. Accessed March 15, 2018
    • (2018) Center for the Evaluative Clinical Sciences
  • 14
    • 85046778746 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Interactive atlas of chronic conditions. Baltimore (MD): Centers for Medicare and Medicaid Services (CMS); 2017. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Chronic-Conditions/Interactive_Atlas.html. Accessed August 30, 2017
    • (2017) Baltimore (MD): Centers for Medicare and Medicaid Services (CMS)
  • 15
    • 84978951174 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Multiple chronic conditions reports. Baltimore (MD): Centers for Medicare & Medicaid Services; 2017 https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Chronic-Conditions/MCC_Main.html. Accessed August 30, 2017
    • (2017) Baltimore (MD): Centers for Medicare & Medicaid Services
  • 16
    • 84872139404 scopus 로고    scopus 로고
    • Data resource profile: the Rochester Epidemiology Project (REP) medical records-linkage system
    • St Sauver JL, Grossardt BR, Yawn BP, Melton LJ 3d, Pankratz JJ, Brue SM, et al. Data resource profile: the Rochester Epidemiology Project (REP) medical records-linkage system. Int J Epidemiol 2012;41(6):1614-24
    • (2012) Int J Epidemiol , vol.41 , Issue.6 , pp. 1614-1624
    • St Sauver, J.L.1    Grossardt, B.R.2    Yawn, B.P.3    Melton, L.J.4    Pankratz, J.J.5    Brue, S.M.6
  • 17
    • 84872916071 scopus 로고    scopus 로고
    • History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population
    • Rocca WA, Yawn BP, St Sauver JL, Grossardt BR, Melton LJ 3d. History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population. Mayo Clin Proc 2012;87(12):1202-13
    • (2012) Mayo Clin Proc , vol.87 , Issue.12 , pp. 1202-1213
    • Rocca, W.A.1    Yawn, B.P.2    St Sauver, J.L.3    Grossardt, B.R.4    Melton, L.J.5
  • 19
    • 79955633775 scopus 로고    scopus 로고
    • Use of a medical records linkage system to enumerate a dynamic population over time: the Rochester epidemiology project
    • St Sauver JL, Grossardt BR, Yawn BP, Melton LJ 3d, Rocca WA. Use of a medical records linkage system to enumerate a dynamic population over time: the Rochester epidemiology project. Am J Epidemiol 2011;173(9):1059-68
    • (2011) Am J Epidemiol , vol.173 , Issue.9 , pp. 1059-1068
    • St Sauver, J.L.1    Grossardt, B.R.2    Yawn, B.P.3    Melton, L.J.4    Rocca, W.A.5
  • 20
    • 85046081319 scopus 로고    scopus 로고
    • Accessed January 30, 2017
    • Annual county resident population estimates by age, sex, race, and Hispanic origin: April 1, 2010 to July 1, 2015. US Census Bureau American Fact Finder; 2017. https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_CP05&prodType=table. Accessed January 30, 2017
    • (2017) US Census Bureau American Fact Finder
  • 22
    • 85046085123 scopus 로고    scopus 로고
    • Rockville (MD): Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project (HCUP). Accessed August 30, 2017
    • Clinical Classifications Software (CCS) category names (full labels). Single-level CCS and multi-level CCS. Rockville (MD): Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project (HCUP); 2017. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/CCSCategoryNames_FullLabels.pdf. Accessed August 30, 2017
    • (2017) Single-level CCS and multi-level CCS
  • 23
    • 85046082535 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Medical Expenditure Panel Survey (MEPS) summary data tables: condition categories. Rockville (MD): Agency for Healthcare Research and Quality; 2017. https://meps.ahrq.gov/data_stats/conditions04.shtml. Accessed August 30, 2017
    • (2017) Rockville (MD): Agency for Healthcare Research and Quality
  • 24
    • 84877681374 scopus 로고    scopus 로고
    • Defining and measuring chronic conditions: imperatives for research, policy, program, and practice
    • Goodman RA, Posner SF, Huang ES, Parekh AK, Koh HK. Defining and measuring chronic conditions: imperatives for research, policy, program, and practice. Prev Chronic Dis 2013;10:E66
    • (2013) Prev Chronic Dis , vol.10 , pp. E66
    • Goodman, R.A.1    Posner, S.F.2    Huang, E.S.3    Parekh, A.K.4    Koh, H.K.5
  • 25
    • 85046082535 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Toolkit for using the AHRQ quality indicators. Rockville (MD): Agency for Healthcare Research and Quality; 2017. https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/systems/hospital/qitoolkit/b1-applyingqis.pdf. Accessed August 30, 2017
    • (2017) Rockville (MD): Agency for Healthcare Research and Quality
  • 26
    • 85046092241 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Appendix V: method of calculating observed to expected ratio as a measure of strength of association. Canberra, Australia; 2006. http://www.abs.gov.au/AUSSTATS/@.nsf/956c382b0b05ba7d4a2568010004e173/a576701f2eeeef76ca256d6b0004e3e4!OpenDocument. Accessed August 30, 2017
    • (2006) Canberra, Australia
  • 27
    • 0026742840 scopus 로고
    • Simple SAS macros for the calculation of exact binomial and Poisson confidence limits
    • Daly L. Simple SAS macros for the calculation of exact binomial and Poisson confidence limits. Comput Biol Med 1992;22(5):351-61
    • (1992) Comput Biol Med , vol.22 , Issue.5 , pp. 351-361
    • Daly, L.1
  • 29
    • 79951534967 scopus 로고    scopus 로고
    • The Patient Protection and Affordable Care Act: implications for public health policy and practice
    • Rosenbaum S. The Patient Protection and Affordable Care Act: implications for public health policy and practice. Public Health Rep 2011;126(1):130-5
    • (2011) Public Health Rep , vol.126 , Issue.1 , pp. 130-135
    • Rosenbaum, S.1
  • 30
    • 84878242293 scopus 로고    scopus 로고
    • The appeal of large simple trials
    • Roehr B. The appeal of large simple trials. BMJ 2013;346:f1317
    • (2013) BMJ , vol.346
    • Roehr, B.1
  • 31
    • 84969286938 scopus 로고    scopus 로고
    • Accessed August 30, 2017
    • Behavioral Risk Factor Surveillance System: prevalence data and data analysis tools. Atlanta (GA): Centers for Disease Control and Prevention; 2016. https://www.cdc.gov/brfss/data_tools.htm. Accessed August 30, 2017
    • (2016) Atlanta (GA): Centers for Disease Control and Prevention
  • 33
    • 47649116933 scopus 로고    scopus 로고
    • Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database
    • Quan H, Li B, Saunders LD, Parsons GA, Nilsson CI, Alibhai A, et al. Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res 2008;43(4):1424-41
    • (2008) Health Serv Res , vol.43 , Issue.4 , pp. 1424-1441
    • Quan, H.1    Li, B.2    Saunders, L.D.3    Parsons, G.A.4    Nilsson, C.I.5    Alibhai, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.