메뉴 건너뛰기




Volumn 10, Issue 4, 2018, Pages

Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory

Author keywords

Freshwater wetland; Lake Baikal; Methodological comparison; Selenga River Delta; WorldView 2

Indexed keywords

DECISION TREES; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; LAKES; LEARNING ALGORITHMS; LEARNING SYSTEMS; REMOTE SENSING; VEGETATION; WETLANDS;

EID: 85045960898     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10040580     Document Type: Article
Times cited : (180)

References (98)
  • 2
    • 79955996802 scopus 로고    scopus 로고
    • Remote sensing of wetlands: Case studies comparing practical techniques
    • Klemas, V. Remote sensing of wetlands: Case studies comparing practical techniques. J. Coast. Res. 2011, 27, 418-427
    • (2011) J. Coast. Res , vol.27 , pp. 418-427
    • Klemas, V.1
  • 3
    • 84994173167 scopus 로고    scopus 로고
    • The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers
    • Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3-39
    • (2017) Hydrobiologia , vol.793 , pp. 3-39
    • Biggs, J.1    von Fumetti, S.2    Kelly-Quinn, M.3
  • 4
    • 0004125109 scopus 로고
    • 2nd ed Van Nostrand Reinhold Press: New York, NY, USA
    • Mitsch, W.; Gosselink, J. Wetlands, 2nd ed.; Van Nostrand Reinhold Press: New York, NY, USA, 1993
    • (1993) Wetlands
    • Mitsch, W.1    Gosselink, J.2
  • 5
    • 0033377497 scopus 로고    scopus 로고
    • Global wetland inventory-current status and future priorities
    • Finlayson, C.; Davidson, N.; Spiers, A.; Stevenson, N. Global wetland inventory-current status and future priorities. Mar. Freshw. Res. 1999, 50, 717-727
    • (1999) Mar. Freshw. Res , vol.50 , pp. 717-727
    • Finlayson, C.1    Davidson, N.2    Spiers, A.3    Stevenson, N.4
  • 7
    • 38849115232 scopus 로고    scopus 로고
    • Current approaches to wetland status and trends monitoring in prairie Canada and the continental United States of America
    • Dahl, T.E.; Watmough, M.D. Current approaches to wetland status and trends monitoring in prairie Canada and the continental United States of America. Can. J. Remote Sens. 2007, 33, 17-27
    • (2007) Can. J. Remote Sens , vol.33 , pp. 17-27
    • Dahl, T.E.1    Watmough, M.D.2
  • 9
    • 0036814955 scopus 로고    scopus 로고
    • Satellite remote sensing of wetlands
    • Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381-402
    • (2002) Wetl. Ecol. Manag , vol.10 , pp. 381-402
    • Ozesmi, S.L.1    Bauer, M.E.2
  • 10
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
    • Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281-296
    • (2010) Wetl. Ecol. Manag , vol.18 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 11
    • 0029340490 scopus 로고
    • Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar
    • Hess, L.L.; Melack, J.M.; Filoso, S.; Wang, Y. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 1995, 33, 896-904
    • (1995) IEEE Trans. Geosci. Remote Sens , vol.33 , pp. 896-904
    • Hess, L.L.1    Melack, J.M.2    Filoso, S.3    Wang, Y.4
  • 12
    • 2942733642 scopus 로고    scopus 로고
    • Thematic accuracy of the 1992 National Land-Cover Data for the western United States
    • Wickham, J.; Stehman, S.; Smith, J.; Yang, L. Thematic accuracy of the 1992 National Land-Cover Data for the western United States. Remote Sens. Environ. 2004, 91, 452-468
    • (2004) Remote Sens. Environ , vol.91 , pp. 452-468
    • Wickham, J.1    Stehman, S.2    Smith, J.3    Yang, L.4
  • 13
    • 34047138873 scopus 로고    scopus 로고
    • Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data
    • Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582-605
    • (2007) Remote Sens. Environ , vol.107 , pp. 582-605
    • Wright, C.1    Gallant, A.2
  • 14
    • 84864972207 scopus 로고    scopus 로고
    • Improving wetland characterization with multi-sensor, multi-temporal SAR and optical/infrared data fusion
    • InTechOpen Press: London UK
    • Bourgeau-Chavez, L.L.; Riordan, K.; Powell, R.B.; Miller, N.; Nowels, M. Improving wetland characterization with multi-sensor, multi-temporal SAR and optical/infrared data fusion. In Advances in Geosciences and Remote Sensing; InTechOpen Press: London, UK, 2009; pp. 679-708
    • (2009) Advances in Geosciences and Remote Sensing , pp. 679-708
    • Bourgeau-Chavez, L.L.1    Riordan, K.2    Powell, R.B.3    Miller, N.4    Nowels, M.5
  • 15
    • 34249760866 scopus 로고
    • Wetland classification and inventory: A summary
    • Finlayson, C.; Valk, A.G. Wetland classification and inventory: A summary. Plant Ecol. 1995, 118, 185-192
    • (1995) Plant Ecol , vol.118 , pp. 185-192
    • Finlayson, C.1    Valk, A.G.2
  • 16
    • 85017267862 scopus 로고    scopus 로고
    • A review of wetland remote sensing
    • Guo, M.; Li, J.; Sheng, C.; Xu, J.;Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777
    • (2017) Sensors , vol.17 , pp. 777
    • Guo, M.1    Li, J.2    Sheng, C.3    Xu, J.4    Wu, L.5
  • 18
  • 19
    • 0036155842 scopus 로고    scopus 로고
    • Subpixel classification of alder trees using multitemporal Landsat Thematic Mapper imagery
    • Oki, K.; Oguma, H.; Sugita, M. Subpixel classification of alder trees using multitemporal Landsat Thematic Mapper imagery. Photogramm. Eng. Remote Sens. 2002, 68, 77-82
    • (2002) Photogramm. Eng. Remote Sens , vol.68 , pp. 77-82
    • Oki, K.1    Oguma, H.2    Sugita, M.3
  • 20
    • 0038193874 scopus 로고    scopus 로고
    • Mapping vegetation of a wetland ecosystem by fuzzy classification of optical and microwave satellite images supported by various ancillary data
    • Stankiewicz, K.; Dabrowska-Zielinska, K.; Gruszczynska, M.; Hoscilo, A. Mapping vegetation of a wetland ecosystem by fuzzy classification of optical and microwave satellite images supported by various ancillary data. Remote Sens. Agric. Ecosyst. Hydrol. 2003, 4879, 352-361
    • (2003) Remote Sens. Agric. Ecosyst. Hydrol , vol.4879 , pp. 352-361
    • Stankiewicz, K.1    Dabrowska-Zielinska, K.2    Gruszczynska, M.3    Hoscilo, A.4
  • 21
    • 33645020484 scopus 로고    scopus 로고
    • A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in Southern India
    • Shanmugam, P.; Ahn, Y.H.; Sanjeevi, S. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in Southern India. Ecol. Model. 2006, 194, 379-394
    • (2006) Ecol. Model , vol.194 , pp. 379-394
    • Shanmugam, P.1    Ahn, Y.H.2    Sanjeevi, S.3
  • 22
    • 38849184303 scopus 로고    scopus 로고
    • Towards a strategy to implement the Canadian wetland inventory using satellite remote sensing
    • Fournier, R.A.; Grenier, M.; Lavoie, A.; Hélie, R. Towards a strategy to implement the Canadian wetland inventory using satellite remote sensing. Can. J. Remote Sens. 2007, 33, S1-S16
    • (2007) Can. J. Remote Sens , vol.33 , pp. S1-S16
    • Fournier, R.A.1    Grenier, M.2    Lavoie, A.3    Hélie, R.4
  • 23
    • 57849141721 scopus 로고    scopus 로고
    • Object-based classification of a SPOT-4 image for mapping wetlands in the context of greenhouse gases emissions: The case of the Eastmain region, Quebec, Canada
    • Grenier, M.; Labrecque, S.; Garneau, M.; Tremblay, A. Object-based classification of a SPOT-4 image for mapping wetlands in the context of greenhouse gases emissions: The case of the Eastmain region, Quebec, Canada. Can. J. Remote Sens. 2008, 34, S398-S413
    • (2008) Can. J. Remote Sens , vol.34 , pp. S398-S413
    • Grenier, M.1    Labrecque, S.2    Garneau, M.3    Tremblay, A.4
  • 24
    • 80051706698 scopus 로고    scopus 로고
    • Detection of cypress canopies in the Florida Panhandle using subpixel analysis and GIS
    • Wang, J.; Lang, P.A. Detection of cypress canopies in the Florida Panhandle using subpixel analysis and GIS. Remote Sens. 2009, 1, 1028-1042
    • (2009) Remote Sens , vol.1 , pp. 1028-1042
    • Wang, J.1    Lang, P.A.2
  • 25
    • 79953224093 scopus 로고    scopus 로고
    • Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery
    • Frohn, R.; Autrey, B.; Lane, C.; Reif, M. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery. Int. J. Remote Sens. 2011, 32, 1471-1489
    • (2011) Int. J. Remote Sens , vol.32 , pp. 1471-1489
    • Frohn, R.1    Autrey, B.2    Lane, C.3    Reif, M.4
  • 26
    • 84855442605 scopus 로고    scopus 로고
    • How wetland type and area differ through scale: A GEOBIA case study in Alberta's Boreal Plains
    • Powers, R.P.; Hay, G.J.; Chen, G. How wetland type and area differ through scale: A GEOBIA case study in Alberta's Boreal Plains. Remote Sens. Environ. 2011, 117, 135-145
    • (2011) Remote Sens. Environ , vol.117 , pp. 135-145
    • Powers, R.P.1    Hay, G.J.2    Chen, G.3
  • 27
    • 85038215275 scopus 로고    scopus 로고
    • Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping
    • Hird, J.; DeLancey, E.; McDermid, G.; Kariyeva, J. Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1315
    • (2017) Remote Sens , vol.9 , pp. 1315
    • Hird, J.1    DeLancey, E.2    McDermid, G.3    Kariyeva, J.4
  • 31
    • 0027007203 scopus 로고
    • Derivation and applications of probabilistic measures of class membership from the maximum likelihood classification
    • Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335-1341
    • (1992) Photogramm. Eng. Remote Sens , vol.58 , pp. 1335-1341
    • Foody, G.M.1    Campbell, N.A.2    Trodd, N.M.3    Wood, T.F.4
  • 32
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling, an introduction
    • Lek, S.; Guegan, J. Artificial neural networks as a tool in ecological modeling, an introduction. Ecol. Model. 1999, 120, 65-73
    • (1999) Ecol. Model , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.2
  • 33
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: One or the other, or both?
    • Dixon, B.; Candade, N. Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? Int. J. Remote Sens. 2008, 29, 1185-1206
    • (2008) Int. J. Remote Sens , vol.29 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 35
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 36
    • 0002899794 scopus 로고    scopus 로고
    • Learning decision tree classifiers
    • Quinlan, J.R. Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 1996, 28, 71-72
    • (1996) ACM Comput. Surv. (CSUR) , vol.28 , pp. 71-72
    • Quinlan, J.R.1
  • 37
    • 1642357293 scopus 로고    scopus 로고
    • 0. (accessed on 21 March 2018)
    • Quinlan, J.R. Data Mining Tools see5 and c5. 0. 2004. Available online: http://www.rulequest.com/see5-info.html (accessed on 21 March 2018)
    • (2004) Data Mining Tools see5 and c5
    • Quinlan, J.R.1
  • 38
    • 84938967218 scopus 로고    scopus 로고
    • Classification trees and rule-based models
    • Springer: New York NY, USA
    • Kuhn, M.; Johnson, K. Classification trees and rule-based models. In Applied Predictive Modeling; Springer: New York, NY, USA, 2013; pp. 369-413
    • (2013) Applied Predictive Modeling , pp. 369-413
    • Kuhn, M.1    Johnson, K.2
  • 39
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: An alternative to traditional land cover classifiers
    • Hansen, M.; Dubayah, R.; DeFries, R. Classification trees: An alternative to traditional land cover classifiers. Int. J. Remote Sens. 1996, 17, 1075-1081
    • (1996) Int. J. Remote Sens , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    DeFries, R.3
  • 40
    • 0032216156 scopus 로고    scopus 로고
    • Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers
    • DeFries, R.; Hansen, M.; Townshend, J.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141-3168
    • (1998) Int. J. Remote Sens , vol.19 , pp. 3141-3168
    • DeFries, R.1    Hansen, M.2    Townshend, J.3    Sohlberg, R.4
  • 42
    • 33845754355 scopus 로고    scopus 로고
    • Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models
    • Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 2006, 26, 465-474
    • (2006) Wetlands , vol.26 , pp. 465-474
    • Baker, C.1    Lawrence, R.2    Montagne, C.3    Patten, D.4
  • 43
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399-409
    • (1997) Remote Sens. Environ , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 44
    • 33745088736 scopus 로고    scopus 로고
    • A rule-based method for mapping Canada's wetlands using optical, radar and DEM data
    • Li, J.; Chen, W. A rule-based method for mapping Canada's wetlands using optical, radar and DEM data. Int. J. Remote Sens. 2005, 26, 5051-5069
    • (2005) Int. J. Remote Sens , vol.26 , pp. 5051-5069
    • Li, J.1    Chen, W.2
  • 45
    • 0028980515 scopus 로고
    • Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine
    • Sader, S.A.; Ahl, D.; Liou, W.-S. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sens. Environ. 1995, 53, 133-144
    • (1995) Remote Sens. Environ , vol.53 , pp. 133-144
    • Sader, S.A.1    Ahl, D.2    Liou, W.-S.3
  • 46
    • 0033981829 scopus 로고    scopus 로고
    • Detecting wetland change: A rule-based approach using NWI and SPOT-XS data
    • Houhoulis, P.F.; Michener, W.K. Detecting wetland change: A rule-based approach using NWI and SPOT-XS data. Photogramm. Eng. Remote Sens. 2000, 66, 205-211
    • (2000) Photogramm. Eng. Remote Sens , vol.66 , pp. 205-211
    • Houhoulis, P.F.1    Michener, W.K.2
  • 47
    • 85040678879 scopus 로고    scopus 로고
    • Comparing pixel-and object-based approaches in effectively classifying wetland-dominated landscapes
    • Berhane, T.M.; Lane, C.R.; Wu, Q.; Anenkhonov, O.A.; Chepinoga, V.V.; Autrey, B.C.; Liu, H. Comparing pixel-and object-based approaches in effectively classifying wetland-dominated landscapes. Remote Sens. 2018, 10, 46
    • (2018) Remote Sens , vol.10 , pp. 46
    • Berhane, T.M.1    Lane, C.R.2    Wu, Q.3    Anenkhonov, O.A.4    Chepinoga, V.V.5    Autrey, B.C.6    Liu, H.7
  • 48
    • 79955962699 scopus 로고    scopus 로고
    • Combining bagging, boosting, rotation forest and random subspace methods
    • Kotsiantis, S. Combining bagging, boosting, rotation forest and random subspace methods. Artif. Intell. Rev. 2011, 35, 223-240
    • (2011) Artif. Intell. Rev , vol.35 , pp. 223-240
    • Kotsiantis, S.1
  • 49
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Dragut, L.2
  • 50
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 51
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A.;Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 52
    • 85019762868 scopus 로고    scopus 로고
    • Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China
    • Tian, S.; Zhang, X.; Tian, J.; Sun, Q.R. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sens. 2016, 8, 954
    • (2016) Remote Sens , vol.8 , pp. 954
    • Tian, S.1    Zhang, X.2    Tian, J.3    Sun, Q.R.4
  • 53
    • 84883234670 scopus 로고    scopus 로고
    • Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota
    • Corcoran, J.; Knight, J.; Gallant, A. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212-3238
    • (2013) Remote Sens , vol.5 , pp. 3212-3238
    • Corcoran, J.1    Knight, J.2    Gallant, A.3
  • 54
    • 84899769183 scopus 로고    scopus 로고
    • Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data
    • Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118-129
    • (2014) Remote Sens. Environ , vol.149 , pp. 118-129
    • Van Beijma, S.1    Comber, A.2    Lamb, A.3
  • 55
    • 84961061802 scopus 로고    scopus 로고
    • Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States
    • Vanderhoof, M.K.; Alexander, L.C.; Todd, M.J. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States. Landsc. Ecol. 2016, 31, 805-824
    • (2016) Landsc. Ecol , vol.31 , pp. 805-824
    • Vanderhoof, M.K.1    Alexander, L.C.2    Todd, M.J.3
  • 56
    • 85028321072 scopus 로고    scopus 로고
    • Automated quantification of surface water inundation in wetlands using optical satellite imagery
    • DeVries, B.; Huang, C.; Lang, M.; Jones, J.; Hiang, W.; Creed, I.; Carroll, M. Automated quantification of surface water inundation in wetlands using optical satellite imagery. Remote Sens. 2017, 9, 807
    • (2017) Remote Sens , vol.9 , pp. 807
    • DeVries, B.1    Huang, C.2    Lang, M.3    Jones, J.4    Hiang, W.5    Creed, I.6    Carroll, M.7
  • 57
    • 83155175753 scopus 로고    scopus 로고
    • Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in North Central Florida, USA
    • Lane, C.R.; D'Amico, E. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in North Central Florida, USA. Wetlands 2010, 30, 967-977
    • (2010) Wetlands , vol.30 , pp. 967-977
    • Lane, C.R.1    D'Amico, E.2
  • 58
    • 84930081889 scopus 로고    scopus 로고
    • Denitrification potential in geographically isolated wetlands of North Carolina and Florida, USA
    • Lane, C.R.; Autrey, B.C.; Jicha, T.; Lehto, L.; Elonen, C.; Seifert-Monson, L. Denitrification potential in geographically isolated wetlands of North Carolina and Florida, USA. Wetlands 2015, 35, 459-471
    • (2015) Wetlands , vol.35 , pp. 459-471
    • Lane, C.R.1    Autrey, B.C.2    Jicha, T.3    Lehto, L.4    Elonen, C.5    Seifert-Monson, L.6
  • 60
    • 84920091192 scopus 로고    scopus 로고
    • Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach
    • Lane, C.R.; Liu, H.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.;Wu, Q. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 2014, 6, 12187-12216
    • (2014) Remote Sens , vol.6 , pp. 12187-12216
    • Lane, C.R.1    Liu, H.2    Autrey, B.C.3    Anenkhonov, O.A.4    Chepinoga, V.V.5    Wu, Q.6
  • 61
    • 84939873909 scopus 로고    scopus 로고
    • Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery
    • Lane, C.R.; Anenkhonov, O.; Liu, H.; Autrey, B.C.; Chepinoga, V. Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery. Wetl. Ecol. Manag. 2015, 23, 195-214
    • (2015) Wetl. Ecol. Manag , vol.23 , pp. 195-214
    • Lane, C.R.1    Anenkhonov, O.2    Liu, H.3    Autrey, B.C.4    Chepinoga, V.5
  • 62
    • 52949142422 scopus 로고    scopus 로고
    • Seasonal and spatial distribution of heavy metals in the Selenga River Delta
    • Khazheeva, Z.; Tulokhonov, A.; Yao, R.; Hu, W. Seasonal and spatial distribution of heavy metals in the Selenga River Delta. J. Geogr. Sci. 2008, 18, 319-327
    • (2008) J. Geogr. Sci , vol.18 , pp. 319-327
    • Khazheeva, Z.1    Tulokhonov, A.2    Yao, R.3    Hu, W.4
  • 65
    • 4344685943 scopus 로고    scopus 로고
    • Hydrological-morphological zoning of the mouth zone of the Selenga River
    • Potemkina, T. Hydrological-morphological zoning of the mouth zone of the Selenga River. Water Resour. 2004, 31, 11-16
    • (2004) Water Resour , vol.31 , pp. 11-16
    • Potemkina, T.1
  • 67
    • 84867012119 scopus 로고    scopus 로고
    • Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case
    • Thorslund, J.; Jarsjö, J.; Chalov, S.R.; Belozerova, E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780-2792
    • (2012) J. Environ. Monit , vol.14 , pp. 2780-2792
    • Thorslund, J.1    Jarsjö, J.2    Chalov, S.R.3    Belozerova, E.V.4
  • 69
    • 0037144448 scopus 로고    scopus 로고
    • Land cover mapping principles: A return to interpretation fundamentals
    • King, R. Land cover mapping principles: A return to interpretation fundamentals. Int. J. Remote Sens. 2002, 23, 3525-3545
    • (2002) Int. J. Remote Sens , vol.23 , pp. 3525-3545
    • King, R.1
  • 70
    • 33747093349 scopus 로고    scopus 로고
    • Incorporating domain knowledge and spatial relationships into land cover classifications: A rule-based approach
    • Daniels, A.E. Incorporating domain knowledge and spatial relationships into land cover classifications: A rule-based approach. Int. J. Remote Sens. 2006, 27, 2949-2975
    • (2006) Int. J. Remote Sens , vol.27 , pp. 2949-2975
    • Daniels, A.E.1
  • 71
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 72
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266
    • (1996) Remote Sens. Environ , vol.58 , pp. 257-266
    • Gao, B.1
  • 74
    • 84881536045 scopus 로고    scopus 로고
    • Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach
    • McFeeters, S.K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544-3561
    • (2013) Remote Sens , vol.5 , pp. 3544-3561
    • McFeeters, S.K.1
  • 75
    • 84880065736 scopus 로고    scopus 로고
    • Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species
    • Parviainen, M.; Zimmermann, N.; Heikkinen, R.; Luoto, M. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodivers. Conserv. 2013, 22, 1731-1754
    • (2013) Biodivers. Conserv , vol.22 , pp. 1731-1754
    • Parviainen, M.1    Zimmermann, N.2    Heikkinen, R.3    Luoto, M.4
  • 76
    • 34250303986 scopus 로고    scopus 로고
    • Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery
    • Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 3, 295-313
    • (2007) Remote Sens. Environ , vol.3 , pp. 295-313
    • Sakamoto, T.1    Van Nguyen, N.2    Kotera, A.3    Ohno, H.4    Ishitsuka, N.5    Yokozawa, M.6
  • 77
    • 0027838965 scopus 로고
    • Classification of wetland vegetation by texture analysis methods using ERS-1 and JERS-1 images
    • Better Understanding of Earth Environment, Tokyo, Japan, 18-21 August
    • Yamagata, Y.; Yasuoka, Y. Classification of wetland vegetation by texture analysis methods using ERS-1 and JERS-1 images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 1993 (IGARSS'93), Better Understanding of Earth Environment, Tokyo, Japan, 18-21 August 1993; pp. 1614-1616
    • (1993) Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 1993 (IGARSS'93) , pp. 1614-1616
    • Yamagata, Y.1    Yasuoka, Y.2
  • 78
    • 0025199443 scopus 로고
    • Classification of SPOT HRV imagery and texture features
    • Franklin, S.E.; Peddle, D.R. Classification of SPOT HRV imagery and texture features. Remote Sens. 1990, 11, 551-556
    • (1990) Remote Sens , vol.11 , pp. 551-556
    • Franklin, S.E.1    Peddle, D.R.2
  • 81
    • 33750970006 scopus 로고    scopus 로고
    • The soil cover of the Selenga delta area in the Baikal region
    • Gyninova, A.; Korsunov, V. The soil cover of the Selenga delta area in the Baikal region. Eur. Soil Sci. 2006, 39, 243-250
    • (2006) Eur. Soil Sci , vol.39 , pp. 243-250
    • Gyninova, A.1    Korsunov, V.2
  • 82
    • 77953635154 scopus 로고    scopus 로고
    • An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes
    • Liu, H.;Wang, L.; Sherman, D.; Gao, Y.;Wu, Q. An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes. Int. J. Geogr. Inf. Sci. 2010, 24, 1015-1041
    • (2010) Int. J. Geogr. Inf. Sci , vol.24 , pp. 1015-1041
    • Liu, H.1    Wang, L.2    Sherman, D.3    Gao, Y.4    Wu, Q.5
  • 83
    • 79958858290 scopus 로고    scopus 로고
    • Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery
    • Frick, A.; Steffenhagen, P.; Zerbe, S.; Timmermann, T.; Schulz, K. Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery. Photogramm. Fernerkund. Geoinf. 2011, 2011, 109-122
    • (2011) Photogramm. Fernerkund. Geoinf , vol.2011 , pp. 109-122
    • Frick, A.1    Steffenhagen, P.2    Zerbe, S.3    Timmermann, T.4    Schulz, K.5
  • 84
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen, M.; Defries, R.; Townshend, J.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331-1364
    • (2000) Int. J. Remote Sens , vol.21 , pp. 1331-1364
    • Hansen, M.1    Defries, R.2    Townshend, J.3    Sohlberg, R.4
  • 85
    • 0034476942 scopus 로고    scopus 로고
    • Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    • DeFries, R.; Chan, J.C.-W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503-515
    • (2000) Remote Sens. Environ , vol.74 , pp. 503-515
    • DeFries, R.1    Chan, J.C.-W.2
  • 86
    • 0037051907 scopus 로고    scopus 로고
    • Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier
    • Simard, M.; Grandi, G.D.; Saatchi, S.; Mayaux, P. Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. Int. J. Remote Sens. 2002, 23, 1461-1474
    • (2002) Int. J. Remote Sens , vol.23 , pp. 1461-1474
    • Simard, M.1    Grandi, G.D.2    Saatchi, S.3    Mayaux, P.4
  • 87
    • 0005907840 scopus 로고    scopus 로고
    • An information-theoretic analysis of hard and soft assignment methods for clustering
    • Springer: Berlin/Heidelberg, Germany
    • Kearns, M.; Mansour, Y.; Ng, A.Y. An information-theoretic analysis of hard and soft assignment methods for clustering. In Learning in Graphical Models; Springer: Berlin/Heidelberg, Germany, 1998; Volume 89, pp. 495-520
    • (1998) Learning in Graphical Models , vol.89 , pp. 495-520
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3
  • 89
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999-3011
    • (2008) Remote Sens. Environ , vol.112 , pp. 2999-3011
    • Chan, J.1    Paelinckx, D.2
  • 90
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • Foody, G. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. 2009, 113, 1658-1663
    • (2009) Remote Sens , vol.113 , pp. 1658-1663
    • Foody, G.1
  • 92
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.M.; Iverswon, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181-199
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverswon, L.R.2    Liaw, A.3
  • 93
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using random forests
    • Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using random forests. Remote Sens. Environ. 2011, 115, 2564-2577
    • (2011) Remote Sens. Environ , vol.115 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 94
    • 84937918615 scopus 로고    scopus 로고
    • On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping
    • Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489-8515
    • (2015) Remote Sens , vol.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 95
    • 85082352610 scopus 로고    scopus 로고
    • GIS and remote sensing applications in wetland mapping and monitoring
    • Huang, B., Ed.; Elsevier: Oxford, UK
    • Wu, Q. GIS and remote sensing applications in wetland mapping and monitoring. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; pp. 140-157
    • (2018) Comprehensive Geographic Information Systems , pp. 140-157
    • Wu, Q.1
  • 96
    • 84930017658 scopus 로고    scopus 로고
    • Object-based image analysis in wetland research: A review
    • Dronova, J. Object-based image analysis in wetland research: A review. Remote Sens. 2015, 7, 6380-6413
    • (2015) Remote Sens , vol.7 , pp. 6380-6413
    • Dronova, J.1
  • 97
    • 85032871515 scopus 로고    scopus 로고
    • Mapping the Dabus wetlands, Ethiopia, using random forest classification of Landsat, PALSAR and topographic data
    • Dubeau, P.; King, D.; Unbushe, D.; Rebelo, L. Mapping the Dabus wetlands, Ethiopia, using random forest classification of Landsat, PALSAR and topographic data. Remote Sens. 2017, 9, 1056
    • (2017) Remote Sens , vol.9 , pp. 1056
    • Dubeau, P.1    King, D.2    Unbushe, D.3    Rebelo, L.4
  • 98
    • 58149186662 scopus 로고    scopus 로고
    • Region based segmentation of Quickbird multispectral imagery through bands ratios and fuzzy comparison
    • Wuest, B.; Zhang, Y. Region based segmentation of Quickbird multispectral imagery through bands ratios and fuzzy comparison. ISPRS J. Photogramm. Remote Sens. 2009, 64, 55-64
    • (2009) ISPRS J. Photogramm. Remote Sens , vol.64 , pp. 55-64
    • Wuest, B.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.