-
1
-
-
85100747111
-
EABS: An event-aware backpressure scheduling scheme for emergency Internet of Things
-
Jan
-
T. Qiu, R. Qiao, and D. O. Wu, "EABS: An event-aware backpressure scheduling scheme for emergency Internet of Things, " IEEE Trans. Mobile Comput., vol. 17, no. 1, pp. 72-84, Jan. 2018.
-
(2018)
IEEE Trans. Mobile Comput
, vol.17
, Issue.1
, pp. 72-84
-
-
Qiu, T.1
Qiao, R.2
Wu, D.O.3
-
3
-
-
85047432285
-
-
U.S. Patent 9 152672B2, Jun. 10
-
J. Lin et al, "Method for storage, querying, and analysis of time series data, " U.S. Patent 9 152672B2, Jun. 10, 2015.
-
(2015)
Method for Storage, Querying, and Analysis of Time Series Data
-
-
Lin, J.1
-
4
-
-
0000574780
-
Autoregressive model orders for Durbin's MA and ARMA estimators
-
Aug
-
P. M. T. Broersen, "Autoregressive model orders for Durbin's MA and ARMA estimators, " IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2454-2457, Aug. 2000.
-
(2000)
IEEE Trans. Signal Process
, vol.48
, Issue.8
, pp. 2454-2457
-
-
Broersen, P.M.T.1
-
5
-
-
84925496522
-
Moving average optimization in digital terrain model generation based on test multibeam echosounder data
-
W. Maleika, "Moving average optimization in digital terrain model generation based on test multibeam echosounder data, " Geo-Marine Lett., vol. 35, no. 1, pp. 61-68, 2015.
-
(2015)
Geo-Marine Lett
, vol.35
, Issue.1
, pp. 61-68
-
-
Maleika, W.1
-
6
-
-
84870999624
-
Comparison of the ARMA ARIMA and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
-
M. Valipour, M. E. Banihabib, and S. M. R. Behbahani, "Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir, " J. Hydrol., vol. 476, no. 476, pp. 433-441, 2013.
-
(2013)
J. Hydrol
, vol.476
, Issue.476
, pp. 433-441
-
-
Valipour, M.1
Banihabib, M.E.2
Behbahani, S.M.R.3
-
7
-
-
85010032097
-
Travel time prediction with LSTM neural network
-
Nov
-
Y. Duan, Y. Lv, and F.-Y Wang, "Travel time prediction with LSTM neural network, " in Proc. IEEE Int. Conf. Intell. Transp. Syst, Nov. 2016, pp. 1053-1058.
-
(2016)
Proc. IEEE Int. Conf. Intell. Transp. Syst
, pp. 1053-1058
-
-
Duan, Y.1
Lv, Y.2
Wang, F.-Y.3
-
9
-
-
85047422996
-
Optimization of sheet metal forming process parameters by artificial neural network and orthogonal test method
-
W. Zhang and D. Wang, "Optimization of sheet metal forming process parameters by artificial neural network and orthogonal test method, " in Proc. Int. Conf. Elect., Mech. Ind. Eng., 2016, pp. 194-196.
-
(2016)
Proc. Int. Conf. Elect., Mech. Ind. Eng
, pp. 194-196
-
-
Zhang, W.1
Wang, D.2
-
10
-
-
0003410290
-
-
Princeton, NJ, USA: Princeton Univ. Press
-
J. D. Hamilton, Time Series Analysis, vol. 2. Princeton, NJ, USA: Princeton Univ. Press, 1994.
-
(1994)
Time Series Analysis
, vol.2
-
-
Hamilton, J.D.1
-
11
-
-
85047435461
-
Equipment condition trend prediction based on full vector least squares support vector machine
-
Oct
-
Q. Zhang, J. Han, L. Chen, W. U. Yanzhao, and H. U. Xin, "Equipment condition trend prediction based on full vector least squares support vector machine, " Mach. Tool Hydraulics, vol. 44, no. 19, pp. 174-177, Oct. 2016.
-
(2016)
Mach. Tool Hydraulics
, vol.44
, Issue.19
, pp. 174-177
-
-
Zhang, Q.1
Han, J.2
Chen, L.3
Yanzhao, W.U.4
Xin, H.U.5
-
12
-
-
85012303074
-
Equipment's condition prediction based on the discrete process neural networks
-
Nov
-
Y. H. Zhang, X. H. Han, and S. H. Wang, "Equipment's condition prediction based on the discrete process neural networks, " J. Univ. Electron. Sci. Technol. China, vol. 45, no. 6, pp. 923-928, Nov. 2016.
-
(2016)
J. Univ. Electron. Sci. Technol. China
, vol.45
, Issue.6
, pp. 923-928
-
-
Zhang, Y.H.1
Han, X.H.2
Wang, S.H.3
-
13
-
-
85006412417
-
Prediction of peak values in time series data for prognostics of critical components in nuclear power plants
-
J. Liu and E. Zio, "Prediction of peak values in time series data for prognostics of critical components in nuclear power plants, " IFAC-PapersOnLine, vol. 49, no. 28, pp. 174-178, 2016.
-
(2016)
IFAC-PapersOnLine
, vol.49
, Issue.28
, pp. 174-178
-
-
Liu, J.1
Zio, E.2
-
14
-
-
85025632141
-
Using LSTM networks to predict engine condition on large scale data processing framework
-
O. Aydin and S. Guldamlasioglu, "Using LSTM networks to predict engine condition on large scale data processing framework, " in Proc. Int. Conf. Elect. Electron. Eng., 2017, pp. 281-285.
-
(2017)
Proc. Int. Conf. Elect. Electron. Eng
, pp. 281-285
-
-
Aydin, O.1
Guldamlasioglu, S.2
-
16
-
-
84986253439
-
Social LSTM: Human trajectory prediction in crowded spaces
-
A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, "Social LSTM: Human trajectory prediction in crowded spaces, " in Proc. Comput. Vis. Pattern Recognit., 2016, pp. 961-971.
-
(2016)
Proc. Comput. Vis. Pattern Recognit
, pp. 961-971
-
-
Alahi, A.1
Goel, K.2
Ramanathan, V.3
Robicquet, A.4
Fei-Fei, L.5
Savarese, S.6
-
17
-
-
85015163282
-
LSTM network: A deep learning approach for short-term traffic forecast
-
Z. Zhao et al., "LSTM network: A deep learning approach for short-term traffic forecast, " IET Intell. Transp. Syst., vol. 11, no. 2, pp. 68-75, 2017.
-
(2017)
IET Intell. Transp. Syst
, vol.11
, Issue.2
, pp. 68-75
-
-
Zhao, Z.1
-
18
-
-
85011088503
-
Using LSTM and GRU neural network methods for traffic flow prediction
-
R. Fu, Z. Zhang, and L. Li, "Using LSTM and GRU neural network methods for traffic flow prediction, " in Proc. Youth Acad. Annu. Conf. Chin. Assoc. Autom., 2017, pp. 324-328.
-
(2017)
Proc. Youth Acad. Annu. Conf. Chin. Assoc. Autom
, pp. 324-328
-
-
Fu, R.1
Zhang, Z.2
Li, L.3
-
19
-
-
84955143444
-
Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
-
1
-
F. J. Ordóñez and D. Roggen, "Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition, " Sensors, no. 16, no. 1, p. 115, 2016.
-
(2016)
Sensors
, Issue.16
, pp. 115
-
-
Ordóñez, F.J.1
Roggen, D.2
-
20
-
-
85031676638
-
-
Jul
-
P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff. (Jul. 2016). "LSTM-based encoder-decoder for multi-sensor anomaly detection." [Online]. Available: https://arxiv.org/abs/1607.00148
-
(2016)
LSTM-based Encoder-decoder for Multi-sensor Anomaly Detection
-
-
Malhotra, P.1
Ramakrishnan, A.2
Anand, G.3
Vig, L.4
Agarwal, P.5
Shroff, G.6
-
22
-
-
84994171964
-
Resource requests prediction in the cloud computing environment with a deep belief network
-
W. Zhang et al., "Resource requests prediction in the cloud computing environment with a deep belief network, " Softw., Pract. Exper., vol. 47, no. 3, pp. 473-488, 2017. [Online]. Available: https://doi.org/10.1002/spe.2426
-
(2017)
Softw., Pract. Exper
, vol.47
, Issue.3
, pp. 473-488
-
-
Zhang, W.1
|