메뉴 건너뛰기




Volumn 6, Issue , 2018, Pages 23551-23560

LSTM-Based Analysis of Industrial IoT Equipment

Author keywords

industry Internet of Things; LSTM model; power equipment; Time series prediction

Indexed keywords

DATA STRUCTURES; DEEP NEURAL NETWORKS; FORECASTING; INTERNET OF THINGS; MEAN SQUARE ERROR; MONITORING; POWER GENERATION; SEARCH ENGINES; SENSORS; TIME SERIES ANALYSIS;

EID: 85045320757     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2018.2825538     Document Type: Article
Times cited : (107)

References (22)
  • 1
    • 85100747111 scopus 로고    scopus 로고
    • EABS: An event-aware backpressure scheduling scheme for emergency Internet of Things
    • Jan
    • T. Qiu, R. Qiao, and D. O. Wu, "EABS: An event-aware backpressure scheduling scheme for emergency Internet of Things, " IEEE Trans. Mobile Comput., vol. 17, no. 1, pp. 72-84, Jan. 2018.
    • (2018) IEEE Trans. Mobile Comput , vol.17 , Issue.1 , pp. 72-84
    • Qiu, T.1    Qiao, R.2    Wu, D.O.3
  • 4
    • 0000574780 scopus 로고    scopus 로고
    • Autoregressive model orders for Durbin's MA and ARMA estimators
    • Aug
    • P. M. T. Broersen, "Autoregressive model orders for Durbin's MA and ARMA estimators, " IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2454-2457, Aug. 2000.
    • (2000) IEEE Trans. Signal Process , vol.48 , Issue.8 , pp. 2454-2457
    • Broersen, P.M.T.1
  • 5
    • 84925496522 scopus 로고    scopus 로고
    • Moving average optimization in digital terrain model generation based on test multibeam echosounder data
    • W. Maleika, "Moving average optimization in digital terrain model generation based on test multibeam echosounder data, " Geo-Marine Lett., vol. 35, no. 1, pp. 61-68, 2015.
    • (2015) Geo-Marine Lett , vol.35 , Issue.1 , pp. 61-68
    • Maleika, W.1
  • 6
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA ARIMA and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • M. Valipour, M. E. Banihabib, and S. M. R. Behbahani, "Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir, " J. Hydrol., vol. 476, no. 476, pp. 433-441, 2013.
    • (2013) J. Hydrol , vol.476 , Issue.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 9
    • 85047422996 scopus 로고    scopus 로고
    • Optimization of sheet metal forming process parameters by artificial neural network and orthogonal test method
    • W. Zhang and D. Wang, "Optimization of sheet metal forming process parameters by artificial neural network and orthogonal test method, " in Proc. Int. Conf. Elect., Mech. Ind. Eng., 2016, pp. 194-196.
    • (2016) Proc. Int. Conf. Elect., Mech. Ind. Eng , pp. 194-196
    • Zhang, W.1    Wang, D.2
  • 10
    • 0003410290 scopus 로고
    • Princeton, NJ, USA: Princeton Univ. Press
    • J. D. Hamilton, Time Series Analysis, vol. 2. Princeton, NJ, USA: Princeton Univ. Press, 1994.
    • (1994) Time Series Analysis , vol.2
    • Hamilton, J.D.1
  • 11
    • 85047435461 scopus 로고    scopus 로고
    • Equipment condition trend prediction based on full vector least squares support vector machine
    • Oct
    • Q. Zhang, J. Han, L. Chen, W. U. Yanzhao, and H. U. Xin, "Equipment condition trend prediction based on full vector least squares support vector machine, " Mach. Tool Hydraulics, vol. 44, no. 19, pp. 174-177, Oct. 2016.
    • (2016) Mach. Tool Hydraulics , vol.44 , Issue.19 , pp. 174-177
    • Zhang, Q.1    Han, J.2    Chen, L.3    Yanzhao, W.U.4    Xin, H.U.5
  • 12
    • 85012303074 scopus 로고    scopus 로고
    • Equipment's condition prediction based on the discrete process neural networks
    • Nov
    • Y. H. Zhang, X. H. Han, and S. H. Wang, "Equipment's condition prediction based on the discrete process neural networks, " J. Univ. Electron. Sci. Technol. China, vol. 45, no. 6, pp. 923-928, Nov. 2016.
    • (2016) J. Univ. Electron. Sci. Technol. China , vol.45 , Issue.6 , pp. 923-928
    • Zhang, Y.H.1    Han, X.H.2    Wang, S.H.3
  • 13
    • 85006412417 scopus 로고    scopus 로고
    • Prediction of peak values in time series data for prognostics of critical components in nuclear power plants
    • J. Liu and E. Zio, "Prediction of peak values in time series data for prognostics of critical components in nuclear power plants, " IFAC-PapersOnLine, vol. 49, no. 28, pp. 174-178, 2016.
    • (2016) IFAC-PapersOnLine , vol.49 , Issue.28 , pp. 174-178
    • Liu, J.1    Zio, E.2
  • 14
    • 85025632141 scopus 로고    scopus 로고
    • Using LSTM networks to predict engine condition on large scale data processing framework
    • O. Aydin and S. Guldamlasioglu, "Using LSTM networks to predict engine condition on large scale data processing framework, " in Proc. Int. Conf. Elect. Electron. Eng., 2017, pp. 281-285.
    • (2017) Proc. Int. Conf. Elect. Electron. Eng , pp. 281-285
    • Aydin, O.1    Guldamlasioglu, S.2
  • 17
    • 85015163282 scopus 로고    scopus 로고
    • LSTM network: A deep learning approach for short-term traffic forecast
    • Z. Zhao et al., "LSTM network: A deep learning approach for short-term traffic forecast, " IET Intell. Transp. Syst., vol. 11, no. 2, pp. 68-75, 2017.
    • (2017) IET Intell. Transp. Syst , vol.11 , Issue.2 , pp. 68-75
    • Zhao, Z.1
  • 18
    • 85011088503 scopus 로고    scopus 로고
    • Using LSTM and GRU neural network methods for traffic flow prediction
    • R. Fu, Z. Zhang, and L. Li, "Using LSTM and GRU neural network methods for traffic flow prediction, " in Proc. Youth Acad. Annu. Conf. Chin. Assoc. Autom., 2017, pp. 324-328.
    • (2017) Proc. Youth Acad. Annu. Conf. Chin. Assoc. Autom , pp. 324-328
    • Fu, R.1    Zhang, Z.2    Li, L.3
  • 19
    • 84955143444 scopus 로고    scopus 로고
    • Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
    • 1
    • F. J. Ordóñez and D. Roggen, "Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition, " Sensors, no. 16, no. 1, p. 115, 2016.
    • (2016) Sensors , Issue.16 , pp. 115
    • Ordóñez, F.J.1    Roggen, D.2
  • 22
    • 84994171964 scopus 로고    scopus 로고
    • Resource requests prediction in the cloud computing environment with a deep belief network
    • W. Zhang et al., "Resource requests prediction in the cloud computing environment with a deep belief network, " Softw., Pract. Exper., vol. 47, no. 3, pp. 473-488, 2017. [Online]. Available: https://doi.org/10.1002/spe.2426
    • (2017) Softw., Pract. Exper , vol.47 , Issue.3 , pp. 473-488
    • Zhang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.